Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Molecule-sized bait used by UCLA research team to fish for new drug targets

Fishing for molecules
(Left) Atomic force microscopy image of serotonin precursor-modified surface with captured serotonin receptor-containing nanovesicles. (Right) Illustration of the molecular structures of the surface chemistry and the relative size differences between the "bait" (5-hydroxytryptophan) and the membrane-associated serotonin receptors selectively captured by these surfaces.
Fishing for molecules (Left) Atomic force microscopy image of serotonin precursor-modified surface with captured serotonin receptor-containing nanovesicles. (Right) Illustration of the molecular structures of the surface chemistry and the relative size differences between the "bait" (5-hydroxytryptophan) and the membrane-associated serotonin receptors selectively captured by these surfaces.

Abstract:
The technique could lead to a new generation of psychiatric medications

By Mike Rodewald

Molecule-sized bait used by UCLA research team to fish for new drug targets

Los Angeles, CA | Posted on May 15th, 2010

UCLA researchers and their collaborators have developed a method that could open the door for investigations into the function of half of all proteins in the human body.

The research team has demonstrated nanoscale control over molecules, allowing for the precise study of interactions between proteins and small molecules. Their new technique, in which molecules are used as bait to capture and study large biomolecules, could lead to a new generation of psychiatric medications.

In a paper published last month in the journal ACS Chemical Neuroscience, an interdisciplinary team of researchers from UCLA and the Pennsylvania State University (PSU) report on their investigation of the interactions between large biomolecules, which include DNA and proteins, and small molecules, which include hormones and neurotransmitters such as serotonin.

The research team, led by Anne Andrews, professor of psychiatry and a researcher at both the Semel Institute for Neuroscience and Human Behavior at UCLA and UCLA's California NanoSystems Institute (CNSI), is studying these interactions to identify a new generation of targets, or key molecules that correspond to specific diseases or conditions.

Interactions between large biomolecules and small molecules are ubiquitous in nature; they are the method for communication within and between cells. But these interactions have proven difficult to isolate in a laboratory setting. Increased understanding of these interactions is vital for the development of new medications for psychiatric disorders, the researchers say.

"Currently, little is known about which targets apply to specific diseases," Andrews said. "Pharmaceutical companies are very good at designing medications once they have a target to go after; my group is working on providing them with targets."

Up to this point, drug development for psychiatric disorders such as depression has been a trial-and-error process in which pharmaceutical companies refine new drugs based on a few existing drugs that were discovered accidentally. Andrews said she hopes that her team's research will lead to more effective treatments, because current depression medications only work for 30 to 50 percent of the population.

Nanoscale control is the key to the UCLA-Penn State team's findings. Their breakthrough capitalizes on work by the research group of co-author Paul Weiss on patterning self-assembled monolayers (SAMs), single layers of molecules that orient themselves on flat surfaces. Weiss, a distinguished professor of chemistry and biochemistry who holds UCLA's Fred Kavli Chair in Nanosystems Sciences, and others discovered that SAMs don't actually form perfect surfaces. They contain defects, which can in turn be used to isolate single molecules.

"Currently we are able to space defects out over a surface. We then use these defects to control the placement and environment of the individual functional molecules," said Weiss, who is also director of the CNSI.

Even spacing is important because the UCLA-Penn State team placed serotonin, a small molecule, in defects to act as bait to capture and study large molecules. If the defects are not widely spaced, there is not enough space between serotonin molecules for each to capture a large molecule.

Large biomolecule and small molecule interactions have proved notoriously difficult to study using previous methods. When the SAM fishing pole baited with serotonin captures a large molecule, the research team is able to study the interactions in a way that replicates the molecules' natural interactions.

####

About California NanoSystems Institute at UCLA
The California NanoSystems Institute at UCLA is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world — atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.

For more information, please click here

Contacts:
Media Contacts
Jennifer Marcus
310-267-4839


Mike Rodewald
310-267-5883

Copyright © California NanoSystems Institute at UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanomedicine

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Nanobiotechnology

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project