Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hemmer publishes paper in Nature Nanotechnology

Dr. Phillip Hemmer
Dr. Phillip Hemmer

Abstract:
Dr. Phillip Hemmer and several co-authors have published a paper in the prestigious research publication Nature Nanotechnology.

by Deana Totzke

Hemmer publishes paper in Nature Nanotechnology

College Station, TX | Posted on February 27th, 2010

"Basically this is the first demonstration of nano-photonic structures on diamond that are suitable for applications such as quantum computing, ultrasensitive nanoscale magnetometers, or future quantum optics applications like single atom nonlinear optics and solid state lasers," Hemmer said. "Many of these applications make use of single color centers like the nitrogen-vacancy (NV).

"Previous demonstrations of diamond photonic nanostructures showed nice electron microscope pictures along with claims that these structures could be eventually used for quantum optics applications, but in reality the background fluorescence of these nanostructures was much too high to allow single color centers to be observed. In contrast the structures we report on in this paper easily allow single NV color centers to be seen," Hemmer said.

The full listing of authors for this paper is Thomas M. Babinec, Birgit J. M. Hausmann, Mughees Khan, Yinan Zhang, Jeronimo R. Maze, Philip R. Hemmer and Marko Loncar.

Hemmer, a professor in the Department of Electrical and Computer Engineering at Texas A&M University, joined the department in January 2002. He received his bachelor's degree from the University of Dayton in 1976 and his Ph.D. in physics from MIT in 1984. His interest areas are in solid materials for quantum optics, especially "dark resonance" excitation, materials and techniques for resonant nonlinear optics, phase-conjugate-based turbulence aberration and compensation, spectral holeburning materials and techniques for ultra-dense memories and high temperature operation, quantum computing in solid materials, quantum communication and teleportation in trapped atoms, holographic optical memory materials, smart pixels devices, optical correlators, photorefractive applications, atomic clocks and laser trapping and cooling.

Honors include receiving the Ruth and William Neely '52/Dow Chemical Fellowship, an outstanding faculty award from the department, an NSF Fellowship, the Air Force Research Laboratory Chief Scientist's award and the AFOSR Star Team Award three times. He also is a member of the Optical Society of America, S.P.I.E. and American Physical Society.

Nature Nanotechnology is a multidisciplinary journal that publishes papers of the highest quality and significance in all areas of nanoscience and nanotechnology. The journal covers research into the design, characterization and production of structures, devices and systems that involve the manipulation and control of materials and phenomena at atomic, molecular and macromolecular scales. Both bottom-up and top-down approaches — and combinations of the two — are covered.

The paper, "A diamond nanowire single-photon source," can be found at www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2010.6.html

####

About Texas A&M University
The mission of Texas A&M Engineering is to serve Texas, the nation and the global community by providing engineering graduates who are well founded in engineering fundamentals, instilled with the highest standards of professional and ethical behavior, and are prepared to meet the complex technical challenges of society.

For more information, please click here

Contacts:
Deana Totzke


For media relations contact
Tim Schnettler

(979) 458-2277

Copyright © Texas A&M University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Photonics/Optics/Lasers

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project