Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Brigham Young University selects NanoSight to support research in the synthesis of inorganic nanoparticles

The NanoSight users at Brigham Young University
The NanoSight users at Brigham Young University

Abstract:
The Department of Chemistry & Biochemistry at Brigham Young University (BYU) has chosen the NanoSight LM-10 system to support their research into the synthesis of inorganic nanoparticles, principally metal oxides.

Brigham Young University selects NanoSight to support research in the synthesis of inorganic nanoparticles

Salisbury, UK | Posted on January 26th, 2010

The BYU research team of Dr. Brian Woodfield are working on the development of an elegantly simple process that allows the group to make a nearly unlimited array of well-defined inorganic nanoparticles that have controlled sizes from 1 nm to bulk. The particles are highly crystalline with well defined shapes (usually spherical but also rods). The method produces them with chemical and phase purities as high as 99.9999% while the particle size distribution is controlled to approximately ±10%. Dr. Woodfield projects with confidence that they can make industrial size quantities with manufacturing costs significantly less than any other current technique.

Principal user is PhD candidate Betsy Olsen. She has been very impressed with the instrument. "The NanoSight is used to measure particle size as one way to quantify the amount of agglomeration in the process and to see if our de-agglomeration/dispersion techniques are working."

Olsen continued, "The system is used along side other techniques such as TEM and DLS. However, The NanoSight is much faster, less expensive and easier to run than TEM. It provides more control compared to DLS and other traditional particle size analyzers as it allows you to visualize what you are measuring particle by particle. For example, this means you can follow a polydispersed system more accurately."

NanoSight's approach, known as Nanoparticle Tracking Analysis (NTA), has been shown to be ideally suited to both research and process control use. The system is an extremely powerful nanoscale research and development tool for looking a broad range of particle types and concentrations.

To learn more about nanoparticle characterisation using NTA, please visit the company's website (www.nanosight.com) and register for the latest issue of NanoTrail, the company's electronic newsletter.

####

About NanoSight
NanoSight Ltd, of Salisbury, UK, is the world leading provider of instruments for the optical detection and real time analysis of sub-micron particles. The Company supplies unique instruments for nanoparticle analysis in the sub-micron region that go far beyond existing light scattering techniques in the characterisation of polydispersed systems. NanoSight delivers direct visualisation of individual nanoscale particles in suspension from which independent quantitative estimation of particle size, size distribution and concentration are immediately obtained. In viral titre assessment, NanoSight produces more accurate concentration results than plaque assay, and delivers them within minutes, validating the results with a unique real-time image. Founded in 2004, the company currently has more than 200 systems in service worldwide, having begun commercial sales in 2006.

The Company has a growing base of users worldwide, including BASF, BP GlaxoSmithKline, Novartis, 3M Corp, Roche, Solvay & Unilever and many universities.

For more information, please click here

Contacts:
NanoSight Limited
Minton Park
London Road
Amesbury SP4 7RT
T +44 (0) 1980 676060
F +44 (0) 1980 624703


NetDyaLog Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
T +44 (0) 1799 521881
M +44 (0) 7843 012997

Copyright © NanoSight

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project