Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Turning metal black more than just a novelty

Guo in lab at the Institute of Optics at the University of Rochester (photo credit Richard Baker, University of Rochester)
Guo in lab at the Institute of Optics at the University of Rochester (photo credit Richard Baker, University of Rochester)

Abstract:
University of Rochester scientists discover that laser technique used to change the colors of metals could have important implications for medicine.

Turning metal black more than just a novelty

Rochester, NY | Posted on December 28th, 2009

University of Rochester optics professor Chunlei Guo made headlines in the past couple of years when he changed the color of everyday metals by scouring their surfaces with precise, high-intensity laser bursts.

Suddenly it was possible to make sheets of golden tungsten, or black aluminum.

A recent discovery in Guo's lab has shown that, beyond the aesthetic opportunities in his find lie some very powerful potential uses, like diagnosing some diseases with unprecedented ease and precision.

Along with his research assistant, Anatoliy Vorobyev, Guo has discovered that the altered metals can detect electromagnetic radiation with frequencies in the terahertz range (also known as T-rays), which have been challenging, if not impossible, to detect prior to his discovery.

"When we turned metals black, we knew that they became highly absorptive in the visible wavelength range because the altered metals appear pitch black to the eye. Here, we experimentally demonstrated that the enhanced absorption extends well into the far infrared and terahertz frequencies," Guo said.

With wavelengths shorter than microwaves, but longer than infrared rays, T-rays occupy a place in the electromagnetic spectrum that is capable of exciting rotational and vibrational states of organic compounds, like pathogens. This quality could allow doctors and biomedical researchers to get previously impossible glimpses of diseases on the molecular level.

In addition, unlike X-rays, T-rays are non-ionizing, which means that people who are exposed to them don't risk the possible tissue damage that can result from X-rays.

University of California, Berkeley, bioengineering Professor Thomas Budinger says terahertz radiation is like much-higher-frequency radar, except that it theoretically can allow its users to see intricate details of tissue architecture, on the scale of one-thousandth of a millimeter and smaller, instead of large objects like airplanes and boats.

"Terahertz electromagnetic radiation has the capability to interrogate tissues at the cellular level. If applied within microns of the subject of interest, this form of imaging has the theoretical capability to detect properties of molecular assemblages that could be attributes of disease states," Budinger said.

What made terahertz radiation so difficult to detect in the past was that typical materials do not readily absorb that frequency. However, after undergoing Guo's femtosecond structuring technique, metals become over 30 times more absorptive.

The key to creating the black metal in terahertz is a beam of ultra-brief, ultra-intense laser pulses called femtosecond laser pulses. The laser burst lasts less than a quadrillionth of a second. To get a grasp of that kind of speed, consider that a femtosecond is to a second what a second is to about 32 million years. During its brief burst, Guo's laser unleashes as much power as the entire grid of North America onto a spot the size of a needle point. That intense blast forces the surface of the metal to undergo some dramatic changes and makes them extremely efficient in absorbing terahertz radiation.

####

About University of Rochester
The University of Rochester (www.rochester.edu) is one of the nation’s leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Nursing, and the Memorial Art Gallery.

For more information, please click here

Contacts:
Alan Blank

585-275-2671

Copyright © University of Rochester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Possible Futures

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Tools

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Hitachi’s holography electron microscope attains unprecedented resolution:Image acquisition and defocusing correction techniques enable observations of atomic-scale magnetic fields at never-before-seen resolution July 5th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project