Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The Battery of the Future: New storage material improves energy density of lithium-ion battery

Researcher at work: Stefan Koller from the Institute for Chemistry and Technology of Materials 
TU Graz/Lunghammer
Researcher at work: Stefan Koller from the Institute for Chemistry and Technology of Materials TU Graz/Lunghammer

Abstract:
High-performance energy storage technologies for the automotive industry or mobile phone batteries and notebooks providing long battery times - these visions of the future are being brought one step nearer to the present by scientists from Graz University of Technology. Researchers at the Institute for Chemistry and Technology of Materials have developed a new method that utilises silicon for lithium-ion batteries.

The Battery of the Future: New storage material improves energy density of lithium-ion battery

Graz, Austria | Posted on October 28th, 2009

Its storage capacity is ten times higher than the graphite substrate which has been used up to now, and promises considerable improvements for users. The new findings - which came to light in the "NanoPoliBat" EU project - have been recently submitted to the patent office by researchers together with their co-operation partner Varta Microbattery.

Modern electronic devices need more energy and even the automotive industry is hankering after increasingly powerful energy storage systems. The technological development of battery research has been inadequate for some time now. "A real revolution is needed for the development of the next generation. We need new storage materials for lithium-ion batteries", explains battery researcher Stefan Koller, who is familiar with the topic from his doctoral thesis. Together with colleagues from science and industry, he has managed to develop such a substrate material for electrochemical reactions at a low price.

Silicon gel on graphite

In the newly developed process, researchers utilise a silicon-containing gel and apply it to the graphite substrate material. "In this way the graphite works as a buffer, cushioning the big changes in volume of the silicon during the uptake and transfer of lithium ions", explains Koller. Silicon has a lithium-ion storage capacity some ten times higher than the up-to-now commercially used graphite. The new material can thus store more than double the quantity of lithium ions without changes to the battery lifetime. This method is far cheaper than the previous ones in which silicon is separated in the gas phase. The challenge lies in the poor storage density of materials in the counter electrode in the whole battery, something which we have been doing intensive research on," says Koller.

####

About Technische Universität Graz
Today engineers have more responsibility than ever for the quality of life of generations to come. Just as technological progress is shaping our lives more and more, universities of technology are becoming more important in the education and training of scientists, research and development, and as partners with business, industry and politics. This awareness and a modern understanding of technology are the guiding principles of the students, teaching staff and researchers of Graz University of Technology. Its location in the midst of the economic region Graz makes Graz University of Technology a focal point for teaching and research in technical sciences in the South of Austria.

For more information, please click here

Contacts:
Dr. Stefan Koller
Institute for Chemistry and Technology of Materials

Tel.: +43 (0) 316 873 8763
Mobile: +43 (0) 664 39 49 547

Copyright © TU Graz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project