Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotags Pinpoint Multiple Cancer Markers in Live Animals

Abstract:
Using nanoparticles designed specifically to produce a bright Raman spectroscopic signal, a team of investigators at the Center for Cancer Nanotechnology Excellence Focused on Therapy Response (Stanford University Center for Cancer Nanotechnology Excellence [CCNE]) has shown that it can simultaneously track as many as 10 different optical tags in a living animal. This work, the first to use surface-enhanced Raman spectroscopy (SERS) for multiplexed imaging in a living animal, was reported in the Proceedings of the National Academy of Sciences of the United States of America. The results point to the potential of Raman spectroscopy for multiplexed imaging of cancer biomarkers.

Nanotags Pinpoint Multiple Cancer Markers in Live Animals

Bethesda , MD | Posted on August 29th, 2009

Sanjiv Sam Gambhir, M.D., Ph.D., principal investigator of the Stanford CCNE, led the team of investigators that used a set of 10 different silica-coated gold nanoparticles to create the multiplexed in vivo imaging technique. Each of the SERS nanotags generates a unique Raman spectrum when irradiated with near-infrared light. Spectral analysis software can deconvolute, or sort out, the light that each nanotag emits as part of a mixture, yielding the concentration of each individual nanotag.

In one set of experiments, the investigators injected the nanotags individually into a mouse and demonstrated that they could create a map of each nanotag's location in the body. Using the five brightest nanotags, the researchers then attempted multiplexed analysis, and, indeed, the processing software was able to quantify the concentrations of individual nanotags as they accumulated in the liver.

The investigators are now optimizing their Raman microscope to maximize the depth within the body at which they can accurately measure the Raman signal from their nanotags. The researchers note that the chemical nature of the nanotags should enable them to attach specific binding agents for detecting cancer biomarkers as they are discovered.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Multiplexed imaging of surface-enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy”

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project