Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoflares Light Up Molecules in Live Cells

Abstract:
By combining a gold nanoparticle with a unique family of nucleic acids, researchers at Northwestern University have created a new type of intracellular reporting system that with a flash of light reveals the presence and quantity of a wide variety of biologically important molecules. These so-called nanoflares could provide cancer biologists with a highly sensitive method of tracking complex biochemical processes in real time without interfering with those processes.

Nanoflares Light Up Molecules in Live Cells

Bethesda , MD | Posted on August 29th, 2009

Chad A. Mirkin, Ph.D., principal investigator of the Nanomaterials for Cancer Diagnostics and Therapeutics at the Northwestern University Center of Cancer Nanotechnology Excellence, and his colleagues demonstrated the utility of their nanoflares by developing a real-time assay for intracellular adenosine triphosphate (ATP), one of the key energy sources of cellular metabolism. Current methods for ATP analysis require that a cell be destroyed and provide only an average measurement of ATP levels from large number of cells rather than time- and cell-specific measurements. The researchers reported their findings in the journal Nano Letters.

At the center of the nanoflare is a gold nanoparticle coated with a dense layer of nucleic acid aptamers. Aptamers, which are synthesized in the lab, are molecules designed to mimic antibodies in that they bind tightly to a specific chosen molecule. In this case, the aptamers were designed to bind to ATP as well as to the surface of gold nanoparticles. These aptamers were also equipped with a reporter molecule that is capable of producing a bright fluorescent signal.

The key to the nanoflare's unique signaling ability lies in the fact that gold nanoparticles will quench, or prevent, the reporter molecule from emitting its light signal when the attached aptamer is stuck to the nanoparticle. However, when ATP is present, it causes the aptamer to change shape, releasing it from the nanoparticle and allowing the reporter molecule to fluoresce. The amount of aptamer released from the nanoparticle, and hence the intensity of the fluorescent signal, is directly proportional to the amount of ATP present in a cell.

Cells growing in culture rapidly take up the aptamer-coated nanoparticle and soon begin to fluoresce brightly. Then, when the cells are treated with a drug combination known to cause a cell to use up its ATP stores, the fluorescence begins dimming in a dose-dependent manner. Thanks to well-established methods for developing aptamers that will bind to specific biomolecules, it is likely that nanoflares will become a versatile new tool for use in a variety of intracellular processes.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Aptamer nanoflares for molecular detection in living cells”

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project