Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Multi-Laboratory Study Sizes Up Nanoparticle Sizing

Abstract:
As a result of a major inter-laboratory study, the standards body ASTM International has been able to update its guidelines for a commonly used technique for measuring the size of nanoparticles in solutions.

Multi-Laboratory Study Sizes Up Nanoparticle Sizing

Gaithersburg, MD | Posted on August 12th, 2009

The study, which was organized principally by researchers from the National Institute of Standards and Technology (NIST) and the Nanotechnology Characterization Laboratory of the National Cancer Institute, enabled updated guidelines that now include statistically evaluated data on the measurement precisions achieved by a wide variety of laboratories applying the ASTM guide.

Data from the inter-laboratory comparison gathered from 26 different laboratories will provide a valuable benchmark for labs measuring the sizes and size distribution of nanoparticles suspended in fluids—one of the key measurements in nanotechnology research, especially for biological applications, according to materials researcher Vince Hackley, who led the NIST portion of the study.

Size is an important characteristic of nanoparticles in a variety of potential uses, but particularly in biotech applications where they are being studied for possible use in cancer therapies. The size of a nanoparticle can significantly affect how cells respond to it. (See, for example "Study: Cells Selectively Absorb Short Nanotubes," NIST Tech Beat, March 30, 2007.)

One widely used method for rapidly measuring the size profile of nanoparticles in, say, a buffer solution, is photon correlation spectroscopy (PCS), sometimes called "dynamic light scattering." The technique is powerful but tricky. The basic idea is to pass a laser beam through the solution and then to measure how rapidly the scattered light is fluctuating—faster moving particles cause the light scattering to change more rapidly than slower moving particles. If you know that, plus several basic parameters such as the viscosity and temperature of the fluid, says Hackley, and you can control a number of potential sources of error, then you can calculate meaningful size values for the particles.

ASTM standard E2490 is a guide for doing just that. The goal of the ASTM-sponsored study was to evaluate just how well a typical lab could expect to measure particle size following the guide. "The study really assesses, in a sense, how well people can apply these techniques given a fairly well-defined protocol and a well-defined material," explains Hackley. Having a "well-defined material" was a key factor, and one thing that made the experiment possible was the release this past year of NIST's first nanoparticle reference standards for the biomedical research community—NIST-certified solutions of gold nanoparticles of three different diameters, a project also supported by NCL. (See "NIST Reference Materials Are 'Gold Standard' for Bio-Nanotech Research, " NIST Tech Beat, Jan. 8, 2008.)

The inter-laboratory study required participating labs to measure particle size distribution in five samples—the three NIST reference materials and two solutions of dendrimers, a class of organic molecules that can be synthesized within a very narrow size range. The labs used not only PCS, but also electron and atomic force microscopy. The results were factored into precision and bias tables that are now a part of the ASTM standard.

For more on the study and ASTM standard E2490, see the ASTM International release "Extensive Interlaboratory Study Incorporated into Revision of ASTM Nanotechnology Standard."

####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact
Michael Baum

(301) 975-2763

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Nanobiotechnology

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project