Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Coming Soon: Tuberculosis Detection with a Chip?

Abstract:
Lab on a chip: Highly sensitive detection of bacteria with magnetic nanoparticles and a miniaturized NMR method

Coming Soon: Tuberculosis Detection with a Chip?

Weinheim, Germany | Posted on July 30th, 2009

Many of the new techniques based on nanotechnology that have been developed for faster and more sensitive detection of pathogens fail in day-to-day clinical use because they require complex sample preparation or measurement equipment, or simply cannot keep up with the large sample throughput in a clinic. Researchers working with Ralph Weissleder at Harvard Medical School have now developed a very simple process for the rapid detection of pathogens that requires no further sample preparation. As reported in the journal Angewandte Chemie, this technique is based on magnetic nanoparticles and a nuclear magnetic resonance (NMR) measurement.

For their tests, the researchers used the bacillus Calmette-Guérin (BCG), a mycobacterium named after its developers, which was cultured from bovine tuberculosis bacilli in the early twentieth century. This is a weakened strain that is used as a live vaccine against tuberculosis. In addition, it serves as a model for the true tuberculosis pathogen Mycobacterium tuberculosis for research purposes.

The test is this simple: A sample is incubated in a solution that contains special magnetic nanoparticles. These nanoparticles consist of an iron core surrounded by a shell of ferrite, which is an iron oxide. The researchers attached anti-BCG antibodies to the surfaces of the nanoparticles. If BCG bacteria are present in the sample, the antibodies bind to them, thus equipping them with magnetic particles. The liquid is then introduced through microchannels into the tiny chamber of a microfluidic chip. At the exit of the chamber is a membrane that retains the bacteria while the rest of the solution, including excess magnetic particles, passes through. The bacteria thus become concentrated in the chamber.

The chamber is surrounded by a small coil, which produces the magnetic field required for nuclear magnetic resonance measurements (similar to a clinical MRI scanner). The bacteria, with their attached magnetic particles, influence the behavior of the nuclear spins of the water molecules in the chamber. This can be detected directly on the chip by means of the handheld miniaturized NMR system. It was thus possible to detect 20 bacilli in a sputum sample within 30 minutes.

Author: Ralph Weissleder, Harvard Medical School, Boston (USA), csb.mgh.harvard.edu/weissleder

Title: Ultrasensitive Detection of Bacteria Using Core-Shell Nanoparticles and an NMR-Filter System

Angewandte Chemie International Edition 2009, 48, No. 31, 5657-5660, doi: 10.1002/anie.200901791

####

About Angewandte Chemie
Introduced in 1997, Wiley InterScience® (www.interscience.wiley.com) is a leading international resource for scientific, technical, medical and scholarly content.

In June 2008, Wiley InterScience incorporated the online content formerly hosted on Blackwell Synergy to provide access to over 3 million articles across 1400 journals. This massive archive, combined with some 7000 OnlineBooks and major reference works—plus industry leading databases such as The Cochrane Library, and the acclaimed Current Protocols laboratory manuals—make Wiley InterScience one of the world's premiere resources for advanced research.

For more information, please click here

Contacts:
Ralph Weissleder, Harvard Medical School, Boston (USA), csb.mgh.harvard.edu/weissleder

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Possible Futures

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanobiotechnology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project