Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Monitoring Cancer Cell Changes With Quantum Dots

Abstract:
One of the earliest events that changes a normal cell into a malignant one is known as deoxyribonucleic acid (DNA) hypermethylation, a biochemical alteration that inactivates critical tumor-suppressor genes. A team of investigators at Johns Hopkins University has developed a quantum dot-based method that can quantify DNA methylation in premalignant cells harvested from human patients.

Monitoring Cancer Cell Changes With Quantum Dots

Bethesda, MD | Posted on July 21st, 2009

Jeff Tza-Huei Wang, Ph.D., and Hetty E. Carraway, M.D., led the team of researchers that developed the method they call methylation-specific quantitative fluorescence resonance energy transfer (MS-qFRET). The details of their work appear in the journal Genome Research. The MS-qFRET process starts by treating sample DNA with sodium bisulfite, which converts all unmethylated cytosines (one of the four nucleic acid components of DNA) into uracil, leaving any methylated cytosines unchanged. The treated DNA then is amplified using a modified polymerase chain reaction procedure that differentiates between methylated and unmethylated DNA. This procedure also introduces fluorescent markers and biotin molecules on each piece of methylated DNA. Finally, streptavidin-coated quantum dots are added to the amplified DNA, binding tightly to the biotin-linked DNA molecules.

Quantification of methylated DNA occurs by the FRET process, in which energy transfers between the fluorescent molecule and the nearby quantum dot. The amount of fluorescence quenching, measured using confocal microscopy, provides a sensitive and accurate measure of DNA methylation. The technique is sensitive enough to enable the investigators to monitor methylation changes after premalignant cells are treated with drugs known to alter methylation patterns. The researchers also note that this technique is amenable to multiplexing, which affords the opportunity to compare multiple samples from the same patient.

This work, which was supported in part by the National Cancer Institute, is detailed in the paper "MS-qFRET: A quantum dot-based method for analysis of DNA methylation." An investigator from the Lovelace Respiratory Research Institute in Albuquerque also participated in this study. An abstract of the paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with todayís explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Possible Futures

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NISTís grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Nanobiotechnology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project