Home > Press > Nanoparticles Image Breast Cancer
Abstract:
Current methods of detecting breast cancer suffer from low sensitivity, limited spatial resolution, or the need to use complicated and expensive radioisotope-based technologies.
A new report from investigators at the Emory-Georgia Tech Nanotechnology Center for Personalized and Predictive Oncology suggests that targeted iron oxide nanoparticles may overcome these limitations and could serve as novel imaging agents for the early detection of breast tumors.
Reporting its work in the journal Clinical Cancer Research, a research team led by Lily Yang, M.D., Ph.D., and Hui Mao, Ph.D., both of the Emory University School of Medicine, describes its development of a new type of nanoparticle construct comprising a single iron oxide crystal coated with a polymer. This polymer both stabilizes the magnetic core and provides attachment points for tumor-targeting peptides and fluorescent dyes. The targeting peptide is a fragment of a molecule known as urokinase-type plasminogen activator; this fragment binds to a receptor that is overexpressed by breast cancer cells.
In an initial set of experiments, the investigators showed that this construct was taken up specifically by breast tumor cells growing in culture, with virtually no uptake by other types of cells. The researchers were able to image the nanoparticles by detecting the fluorescent dye using standard fluorescence microscopy.
Next, the researchers injected the nanoparticles into mice bearing human breast tumors. By 5 hours after the injection, the nanoparticles were readily detected in tumors using a commercial magnetic resonance imaging scanner. In contrast to untargeted nanoparticles, there was far less uptake of the imaging agent by liver and spleen. The tumor-targeting properties of these nanoparticles were confirmed using fluorescence imaging, which is possible in an animal as small as a mouse.
This work, which is detailed in the paper "Receptor-targeted nanoparticles for in vivo imaging of breast cancer," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. Investigators from Georgia State University and Ocean Nanotech, LLC, also participated in this study. An abstract is available at the journal's Web site.
####
About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Copyright © NCI Alliance for Nanotechnology in Cancer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
New method in the fight against forever chemicals September 13th, 2024
Energy transmission in quantum field theory requires information September 13th, 2024
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Possible Futures
Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Nanomedicine
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Announcements
New discovery aims to improve the design of microelectronic devices September 13th, 2024
New method in the fight against forever chemicals September 13th, 2024
Nanobiotechnology
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||