Home > News > Simple Tea Creates Nano Gold Particles for Fighting Cancer
July 16th, 2009
Simple Tea Creates Nano Gold Particles for Fighting Cancer
Abstract:
Scientists have discovered a way to create cancer-fighting nanoparticles using nothing but gold salts and a cup of Darjeeling tea, according to a paper published in the Journal of Materials Chemistry.
Nanoparticles are particles much smaller than those commonly used in chemical or industrial applications, small enough that they can pass through cell membranes designed to keep foreign particles out. Because even widely studied elements and compounds act drastically different on the nano scale, nanotechnology is a burgeoning area of scientific research.
Most nanoparticles are manufactured during intensive industrial processes involving toxic chemicals and byproducts. Recently, however, researchers at the University of Missouri-Columbia discovered a process for producing nanoparticles by adding gold salts to a soybean-water mixture. Naturally occurring soy phytochemicals interact with the salts to produce stable gold nanoparticles, with no toxic byproducts.
"Our new process only takes what nature has made available to us and uses that to produce a technology that has already proven to have far-reaching impacts in technology and medicine," researcher Kattesh Katti said.
Researchers then repeated the same procedure with Darjeeling tea instead of soy, and found that once again, phytochemicals naturally found in the tea transformed the salts into pure, nano-scale particles of gold. Furthermore, the phytochemicals bind to the outside of the gold particles. This means that the microscopic particles could be injected into tumor cells, carrying cancer-fighting tea compounds directly to where they could provide the most benefit.
Source:
naturalnews.com
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||