Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Computer-Guided Nanoparticle Therapy Destroys Tumors

Abstract:
Gold nanoshells are among the most promising new nanoscale therapeutics being developed to kill tumors, acting as antennas that turn light energy into heat that cooks cancer to death. Now, a multi-institutional research team has shown that polymer-coated gold nanorods one-up their spherical counterparts, with a single dose completely destroying all tumors in a nonhuman animal model of human cancer.

Computer-Guided Nanoparticle Therapy Destroys Tumors

Bethesda, MD | Posted on June 27th, 2009

Reporting its work in the journal Cancer Research, a research team headed by Sangeeta N. Bhatia, M.D., Ph.D., Massachusetts Institute of Technology, and Michael J. Sailor, Ph.D., University of California, San Diego, described its development of gold nanorods, coated with polyethylene glycol, which set a new record for the time they remain circulating in the bloodstream. This long-circulation half-life of approximately 17 hours affords the nanorods the opportunity to accumulate in tumors, thanks to the leaky blood vessels that surround malignancies. Both Dr. Bhatia and Dr. Sailor are members of the National Cancer Institute's Alliance for Nanotechnology in Cancer.

Gold nanoparticles can absorb different frequencies of light, depending on their shape. The rod-shaped particles developed for this study absorb near-infrared light, which heats the nanorods but passes harmlessly through human tissue. In the current work, tumors in mice that received an intravenous injection of nanorods plus near-infrared laser treatment disappeared within 15 days. Those mice survived for 3 months, with no evidence of recurrence, until the end of the study, whereas mice that received no treatment or only the nanorods or laser died within weeks.

During a single exposure to a near-infrared laser, the nanorods heat up to 70° C, hot enough to kill tumor cells. Additionally, heating them to a lower temperature weakens tumor cells enough to enhance the effectiveness of existing chemotherapy treatments, raising the possibility of using the nanorods as a supplement to those treatments. The nanorods also could be used to kill tumor cells left behind after surgery. The investigators note that the nanorods can be more than 1,000 times more precise than a surgeon's scalpel, so potentially they could remove residual cells the surgeon cannot get at.

Another useful characteristic of the gold nanorods is that they are very efficient at absorbing x-rays, providing a sensitivity boost to x-ray imaging methods such as computerized tomography scanning. The investigators took advantage of this property, using x-rays to create a detailed three-dimensional map of where the nanorods accumulated in the tumor-bearing animals. They then used this map to calculate the optimal irradiation protocol to maximize the tumor-killing effect and minimize damage to healthy tissue.

The nanorods' homing abilities also make them a promising tool for diagnosing tumors. After the particles are injected, they can be imaged using a technique known as Raman scattering. Any tissue that lights up, other than liver or spleen tissue, could harbor an invasive tumor. In a second paper, published in the journal Advanced Materials, the researchers showed they could enhance the nanorods' imaging abilities by adding molecules that absorb near-infrared light to the surface of the nanorods. Because of this surface-enhanced Raman scattering, very low concentrations of nanorods—only a few parts per trillion in water—can be detected.

Another advantage of the nanorods is that by coating them with different types of light-scattering molecules, they can be designed to simultaneously gather multiple types of information—not only whether there is a tumor but also whether there is a risk of it invading other tissues, whether it is a primary or secondary tumor, and where it originated.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas.”

View journal citation - “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating.”

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project