Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CNano Technology Commissions World's Largest Carbon Nanotube Manufacturing Plant With a Capacity of 500 Tons per Year

Abstract:
CNano Technology (CNano) announced today at NT09: Tenth International Conference on the Science and Application of Nanotubes, that it has successfully scaled up its manufacturing technology to reach the world's largest production capacity of 500 tons per year for multiple wall carbon nanotubes. The carbon nanotube products are already in evaluation with selected customers in several markets that include electronics, automotive and energy storage.

CNano Technology Commissions World's Largest Carbon Nanotube Manufacturing Plant With a Capacity of 500 Tons per Year

SANTA CLARA, CA | Posted on June 23rd, 2009

"This manufacturing capability is an important milestone in the drive to meet current and future customer supply demands. The production line validates our technology at a much larger scale while providing a reliable large volume supply source for customers utilizing the unique properties of carbon nanotubes in their products," said Xindi Wu, President and CEO of CNano.

CNano proprietary manufacturing technology enables large scale production at a lower cost structure than other commercial nanotube manufacturing processes. The growing list of commercial applications for carbon nanotubes includes conductive plastics for electronics and automotive, structural composites for sporting goods and aerospace, conductive coatings for displays and aerospace and electrodes for batteries and super capacitors among others.

"CNano has achieved a truly significant milestone. CNano can now bring mass produced nano materials to market at the right price. The company has broken through a barrier that has existed in this market up until now. They have successfully scaled the manufacturing process for making carbon nanotubes. This now makes their unique combination of elevated mechanical properties and low electrical resistivity available at the low cost necessary for adoption in large consumer and industrial markets," said Tom Baruch, founder and managing director of CMEA Capital, who serves as chairman of CNano.

"CNano's management has brought high quality US-style manufacturing into China, tapping the best from both sides of the Pacific Ocean. Through its large scale production of carbon nanotubes, we expect to see more applications that will be feasible that leverage the highly unique properties of this material," said Peter Liu, Chairman of WI Harper.

"This major capacity expansion not only validates CNano's differentiated low cost production capabilities but also now resolves market concerns on price and high volume supply," added Purnesh Seegopaul, Partner at Pangaea Ventures.

CNano platform production technology also facilitates the production of other types of carbon nanotubes. The Company plans to further leverage the 500 ton plant for additional products to be rolled out in the near future.

####

About CNano Technology
CNano was founded in 2007 to change the economics of producing a wide range of applications based on extremely pure carbon nanotubes. The company's headquarters are in Santa Clara, CA with manufacturing located in China. CNano has significant intellectual property, existing products, and established customers. It has received venture capital funding from CMEA Capital, Pangaea Ventures, and WI Harper.

For more information, please click here

Contacts:
Xindi Wu
President and CEO
CNano Technology Limited
3333 Bowers Ave., Suite 130
Santa Clara, CA 95054
USA
Phone: 408-826-0918
Fax: 408-899-5157

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project