Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Skyscraper approach to nanoelectronics

June 5th, 2009

Skyscraper approach to nanoelectronics

Abstract:
Scientists based at the University of Georgia, US, have grown conjugated polymer brushes directly onto monolayers, producing films with thicknesses less than 42 nanometres. This is a significant breakthrough for nanotechnology as existing techniques for creating electronics on the nanoscale are reaching their limits.

Previous attempts to grow conjugated polymers on monolayers have had limited success. Using a modified Kumada-type catalyst-transfer polycondensation, Jason Locklin and his team grew polyphenylene and polythiophene brushes, from aryl Grignard monomers, on gold monolayers. They analysed the polymer brushes using cyclic voltammetry, polarization modulation-infrared reflection-adsorption spectroscopy and atomic force microscopy. 'This surface-initiated polymerisation technique allows one to create conjugated polymer films in a controlled fashion,' Locklin comments. The technique 'allows for a high density of functional groups to be obtained in a limited area. This has been called the skyscraper approach.'

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project