April 4th, 2009
Super Rebound
Abstract:
In collisions between two deformable or sticky objects, some or all of the initial energy is usually lost to heat. But computer simulations of nanocluster collisions, as described in the March Physical Review E, show that thermal fluctuations in the tiny projectiles can cause them to rebound with more kinetic energy than they started with. This energy boost would seem to violate the second law of thermodynamics, which bans heat from being turned directly into energy of motion. But for such small objects, the second law doesn't necessarily hold. The researchers believe their work might apply to collisions of microscopic dust particles in space and to techniques in nano-device fabrication.
Source:
Physical Review Focus
| Related News Press |
Thin films
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||