Home > News > Bristling nano balls
March 16th, 2009
Bristling nano balls
Abstract:
A mathematical analysis of inorganic nanoparticles explains why they form complex structures with a layer of hydrophilic polymer chains.
Stephan Förster, Marija Nikolic, Charlotta Olsson, Andrea Salcher, Andreas Kornowski, Andreas Frömsdorf, and Horst Weller, of the University Hamburg, and Anja Rank and Rolf Schubert of the University of Freiburg, Germany, and their colleagues describe how amphiphilic molecules, ones with a hydrophilic and a hydrophobic end, can spontaneously form capsules or bilayers in aqueous solution. The phenomenon is exploited in the action of soaps and detergents which enclose particles or oil droplets within tiny capsules of surfactant, rendering them water soluble.
Cell membranes also follow the same organising principles in which amphiphilic lipids molecules form a bilayer by aggregating so that their hydrophobic tails are sandwiched with their hydrophilic heads protruding into the aqueous environment surrounding the cell.
The researchers have now made hybrid particles composed of a water-insoluble inorganic nanoparticle of cadmium selenide and cadmium sulfide at the core surrounded by a bristle-like layer of hydrophilic polyethylene oxide polymer chains. They attach the nanoparticles to the polymer through amino groups.
Source:
spectroscopynow.com
| Related News Press |
Chemistry
Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
Imaging
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||