Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Leading Memory IC Manufacturer Evaluates Qcept Technologies' NVD Inspection Solution for sub-40-nm Applications

Abstract:
Qcept Technologies Inc. announced today that its ChemetriQ(R) non-visual defect (NVD) inspection solution is being evaluated by one of the world's leading memory manufacturers for use in its most advanced pilot-production line. The ChemetriQ system is primarily being used to inspect memory wafers incorporating sub-40-nm design rules. The system is also inspecting advanced R&D wafers that incorporate novel materials, processes and device structures.

Leading Memory IC Manufacturer Evaluates Qcept Technologies' NVD Inspection Solution for sub-40-nm Applications

Atlanta, GA | Posted on March 10th, 2009

Qcept's ChemetriQ system is being evaluated for a number of applications, such as in-line yield learning to accelerate ramp-up of next-generation processes, excursion monitoring, and pre-scanning prior to sending wafers to the analytical lab to enable faster root-cause analysis of NVDs. These evaluations are being performed at a number of process steps, including post-etch cleans, post-chemical mechanical planarization (CMP) cleans, pre-diffusion cleans, and incoming wafer inspection.

"Despite the current downturn in the semiconductor industry, leading IC manufacturers continue to invest in new technologies that help them to transition to the next node and quickly ramp up their yields on their next-generation products," stated Erik Smith, president of Qcept Technologies. "As the percentage of non-visual defects found in advanced IC manufacturing continues to rise due to tighter process tolerances, as well as the growing number of process steps and new materials, the gap between what defects are seen by optical inspection tools and what actually correlates to yield is growing. Leading manufacturers recognize this trend and its potential impact to their bottom line, and are turning to NVD inspection solutions, like our ChemetriQ technology, to enhance their total yield management strategy."

Qcept's ChemetriQ platform provides rapid, full-wafer, inline detection of NVDs - such as organic and inorganic residues, metallic contaminants, process-induced charging, and watermarks - which are undetectable by optical inspection systems. It accomplishes this by employing an innovative, non-destructive technology that detects work function variations on the surface of semiconductor wafers. The ChemetriQ platform is sensitive to 5E9 atoms/cm2, which exceeds the requirements outlined in the International Technology Roadmap for Semiconductors (ITRS) for metallic contamination detection down to the 22-nm node.

####

About Qcept Technologies Inc.
Qcept delivers wafer inspection solutions for non-visual defect (NVD) detection in advanced semiconductor manufacturing. Qcept's ChemetriQ(R) platform is being adopted in critical processes for inline, non-contact, full-wafer detection of such NVDs as sub-monolayer organic and metallic residues, process-induced charging, and other undesired surface non-uniformities that cannot be detected by conventional optical inspection equipment.

ChemetriQ is a registered trademark of Qcept Technologies Inc. All other trademarks are the property of their respective owners.

For more information, please click here

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Chip Technology

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Tools

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Hitachi’s holography electron microscope attains unprecedented resolution:Image acquisition and defocusing correction techniques enable observations of atomic-scale magnetic fields at never-before-seen resolution July 5th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project