Home > News > Probing the brain wirelessly
March 1st, 2009
Probing the brain wirelessly
Abstract:
IR-absorbing lead selenide particles form the basis of a method for the study of neuronal activation in samples of brain tissues without the need for hard-wired electrodes. The technique instead utilises light-triggered nanostructured semiconductor photoelectrodes to probe activity.
Philip Larimer, Richard Todd Pressler, and Ben Strowbridge of the Department of Neurosciences, at Case Western Reserve University, in Cleveland, Ohio, working with Yixin Zhao and Clemens Burda in CWRU's Center for Chemical Dynamics and Nanomaterials Research explain their approach in the current issue of Angewandte Chemie.
Understanding brain function remains one of the great challenges facing science. For example, simply understanding how brain regions process synaptic inputs to generate defined responses is a puzzle.
One particularly promising avenue of research in this area remains the study of the electrical conduction of stimuli by nerve cells, neurons. However, in order to study neuronal circuits in detail, a sharp metal electrode is usually introduced into the living brain or a brain slice to introduce a current. Such a crude approach is too blunt a probe to discern the highly complex activation patterns of natural nerve stimuli. Moreover, this approach causes direct damage to tissue because of unwanted electrochemical side reactions.
Source:
spectroscopynow.com
Related News Press |
News and information
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Nanomedicine
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
New compound unleashes the immune system on metastases September 8th, 2023
Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023
Discoveries
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Announcements
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |