Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotechnology Accelerates Electric Vehicles Markets, Reaching 32.7 Million Autos Shipped by 2015

Abstract:
ELECTRONICS.CA PUBLICATIONS, the electronics industry market research and knowledge network, announces the availability of a new report entitled "Worldwide Nanotechnology Electric Vehicle Market Shares Strategies, and Forecasts".

Nanotechnology Accelerates Electric Vehicles Markets, Reaching 32.7 Million Autos Shipped by 2015

Canada | Posted on February 28th, 2009

Electric vehicles represent a quantum shift in transportation. The design trajectories are varied; the opportunities are significant as a quantum shift occurs in what the vehicle basic functions are and how the vehicle works. The car companies that leverage the market opportunity to shift to a new paradyne are likely to succeed. There are others who merely try to migrate existing styles and designs to electric vehicles. Buggy whips come to mind.

Markets for electric vehicles at 685 units in 2008 are anticipated to reach 32.7 million autos shipped by 2015, growing in response to demand for a renewable energy powered vehicle that lowers the total cost of ownership by a significant amount. Lithium-ion batteries used in cell phones and PCs, and in cordless power tools are proving the technology to power electric vehicles.

Worldwide nanotechnology thin film lithium-ion batteries are poised to achieve significant growth as units become more able to achieve deliver of power to electric vehicles efficiently. Less expensive lithium-ion batteries allow leveraging economies of scale and proliferation of devices into a wide range of applications. According to Susan Eustis, lead author of the study, "Economies of scale leverage the lithium-ion battery nanotechnology advances needed to make lithium-ion batteries competitive. Nanotechnology provided by lithium-ion research solves the issues poised by the need to store renewable energy. Lithium-ion batteries switch price reductions are poised to drive market adoption by making units affordable."

Nanotechnology results obtained in the laboratory are being translated into commercial products. The processes of translating the nanotechnology science into thin film lithium ion batteries are anticipated to be ongoing. The breakthroughs of science in the laboratory have only begun to be translated into life outside the lab, with a long way to go in improving the functioning of the lithium-ion batteries.

Unlike any other battery technology, thin film solid-state batteries show very high cycle life. Using very thin cathodes batteries have been cycled in excess of 45,000 cycles with very limited loss in capacity. After 45,000 cycles, 95% of the original capacity remained, according to the report.

Details of the new report, table of contents and ordering information can be found on Electronics.ca Publications' web site.

####

For more information, please click here

Contacts:
Electronics.ca Publications
Chiaki Sadanaga
Communications Manager
+1 514 429 1520

Copyright © ELECTRONICS.CA PUBLICATIONS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project