Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Dubai-based tech institute claims major breakthrough

February 28th, 2009

Dubai-based tech institute claims major breakthrough

Abstract:
Your mobile phones and computers will become faster, more powerful and even smaller than they are now, thanks to a technological development by the Dubai Silicon Oasis-based Rochester Institute of Technology (RIT).

According to experts at RIT, advances in the past 40 years in electronics were achieved by making smaller devices that allow for placing more of them on the same chip.

RIT's research in nanophotonics and nanoplasmonics has resulted in "squeezing" or confining light in almost 20nmx20nm. This is a very significant result because it will enable them to make electronic devices even smaller than the existing ones and that means more computer power with faster devices that consume less power. Hence, once this technology hits the market your computer and mobile phone will become more powerful and even smaller.

Dr Mustafa AG Abushagur, President and Dean of RIT Dubai, told Emirates Business: "Electronics has changed the way we live, communicate, entertain and do business for the past 30 or so years. This was made possible by the invention of the integrated circuit (IC), which made possible the fabrication of a large number of transistors (switches) on the same silicon chip. What we have achieved at RIT is very significant because it will enable us to reduce the size of transistors to a level that is impossible now. This means that your computers, mobile phones, PDAs and other electronic devices will become much smaller, cheaper, faster and more powerful."

Source:
business24-7.ae

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Photonics/Optics/Lasers

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project