Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Team develops new metamaterial device: Solid-state metamaterial device tames terahertz frequency

Abstract:
An engineered metamaterial proved it can function as a state-of-the-art device in the complex terahertz range of the electromagnetic spectrum, setting a standard of performance for modulating tiny waves of radiation, according to a team of researchers from Boston College, the Los Alamos and Sandia national laboratories, and Boston University.

Team develops new metamaterial device: Solid-state metamaterial device tames terahertz frequency

CHESTNUT HILL, MA | Posted on February 24th, 2009

An electrical current applied to the metamaterial - a hybrid structure of metallic split-ring resonators - controlled the phase of a terahertz (THz) beam 30 times faster and with far greater precision than a conventional optical device, the researchers report in the current online edition of the journal Nature Photonics.

The discovery marks a milestone in the use of metamaterials and terahertz radiation, a safe, non-ionizing frequency that is the subject of a growing body of research and viewed as a promising component in applications that include advanced security screening systems and imaging technologies.

"This is a true metamaterial device," Boston College Asst. Prof. of Physics Willie J. Padilla, one of the co-authors of the paper, said. "This highlights the fact that you can make solid state devices at terahertz frequencies with metamaterials."

Constructed on the micron-scale, metamaterials are composites that use unique metallic contours in order to produce responses to light waves, giving each metamaterial its own unique properties beyond the elements of the actual materials in use. Within the past decade, researchers have sought ways to significantly expand the range of material responses to waves of electromagnetic radiation - classified by increasing frequency as radio waves, microwaves, terahertz radiation, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays. These metamaterials have demonstrated numerous novel effects that defy accepted electromagnetic principles.

Previously, in systems known as THz time domain spectrometers, the flow of terahertz radiation has been modulated indirectly by optical choppers, mechanical devices that either blocked a laser or allowed it to pass through. This "all or nothing" approach - similar to opening and closing the shutter of a camera - limits the speed with which one can manipulate terahertz waves since the chopper's mechanical components are too slow, Padilla says.

The metamaterial devised by the research team electronically controlled the flow of terahertz radiation over roughly 70 percent of the frequency band - not simply at the points of maximum or minimum frequency.

"We can apply an electronic signal to this device, thus making it opaque to stop terahertz, or transparent to allow terahertz through," Padilla said. "Eventually, you can turn it on and off very quickly - and that allows you to modulate the beam at a very specific frequency."

Because the metamaterial device is solid-state, eliminating moving parts, it is 30 times faster than the optical chopper, according to the report, co-authored by Hou-Tong Chen, Abul K. Azad and Antoinette J. Taylor of Los Alamos National Laboratory, Michael J. Cich of Sandia National Laboratories and Richard D. Averitt of Boston University

"The advantage of the metamaterial is you are doing it electronically," Padilla said. "If you want to build a device, the advantage of this is that it is all solid-state and voltage controlled. You have no moving parts. Therefore, you can modulate at very high speeds."

These kinds of controls have been developed for microwave and optical frequencies and led to a number of key breakthroughs, the researchers note. But the technologies have not extended to the terahertz frequency.

Padilla said a solid-state metamaterial device is a critical step toward improved terahertz devices, such as cameras or scanners.

"What we've shown with this metamaterial is that it is now improved to the point where it could be used as a device," Padilla said. "It could be the device you could use to build a terahertz system."

The research is supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory.

To learn more about Prof. Padilla's lab, please see: http://www2.bc.edu/~padillaw/

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchersí approach may protect quantum computers from attacks March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project