Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Warming up to the Casimir force: The Casimir force between objects in a vacuum shows a complex dependence on temperature

Figure 1: Quantum electrodynamics shows that two uncharged plates in a vacuum will experience an attractive force called the Casimir force, which arises because the plates alter the fluctuations in the vacuum.
Copyright © 2008 Yampol’skii and Nori
Figure 1: Quantum electrodynamics shows that two uncharged plates in a vacuum will experience an attractive force called the Casimir force, which arises because the plates alter the fluctuations in the vacuum.
Copyright © 2008 Yampol’skii and Nori

Abstract:
When two uncharged objects are placed in a vacuum with no external fields, we wouldn't expect them to have any force between them other than gravity. Quantum electrodynamics says otherwise. It shows that tiny quantum oscillations in the vacuum will give rise to an attraction called the Casimir force (Fig. 1).

Warming up to the Casimir force: The Casimir force between objects in a vacuum shows a complex dependence on temperature

Japan | Posted on January 15th, 2009

Scientists at the RIKEN Advanced Science Institute in Wako, and co-workers at the National Academy of Sciences of Ukraine (NASU), have shown for the first time that the Casimir force has a complex dependence on temperature1. They propose a related experiment that could clarify the theory around this important interaction, which has widespread applications in physics and astronomy, and could eventually be exploited in nano-sized electrical and mechanical systems.

"The Casimir force is one of the most interesting macroscopic effects of vacuum oscillations in a quantum electromagnetic field," says Franco Nori from RIKEN and the University of Michigan in the USA. "It arises because the presence of objects, especially conducting metals, alters the quantum fluctuations in the vacuum."

The Casimir force was first predicted in 1948, but has only recently been measured in the laboratory because experiments are difficult—the force is negligible except when the distance between objects is very small. More experiments are needed to understand how the force depends on temperature, an important practical consideration.

"As the temperature increases, metal objects in a vacuum experience two competing effects," explains Sergey Savel'ev from RIKEN and Loughborough University in the UK. "They lose some of their electrical conductivity, which tends to cause a decrease in the Casimir force. At the same time they are bombarded with more radiation pressure from the thermal heat waves, and this increases the Casimir force."

Nori and co-workers derived the temperature dependence for Casimir attractions between a thin film and a thick flat plate, and between a thin film and a large metal sphere. They found that the Casimir force will tend to decrease near room temperature, but can increase again at higher temperatures as the thermal radiation effects take over.

RIKEN's Valery Yampol'skii, who also works at NASU, says that "if these temperature effects were observed in an experiment, they would resolve some fundamental questions about electron relaxation in a vacuum". Such an experiment would be near-impossible with pieces of bulk metal, but could be done using extremely thin metal films.
Reference

1. Yampol'skii, V.A., Savel'ev, S., Mayselis, Z.A., Apostolov, S.S. & Nori, F. Anomalous temperature dependence of the Casimir force for thin metal films. Physical Review Letters 101, 096803 (2008).

The corresponding author for this highlight is based at the RIKEN Digital Materials Team

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

Physics

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

What is "time" for quantum particles? Publication by TU Darmstadt researchers in renowned journal "Science Advances" May 17th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Quantum nanoscience

What is "time" for quantum particles? Publication by TU Darmstadt researchers in renowned journal "Science Advances" May 17th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project