Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dolphins inspire nanotech work, earn researcher $400K

Jonghwan Suhr envisions using the pliable manufactured nanocomposites to allow airplanes and aerospace vehicles to cut through the air more efficiently, saving fuel. Photo by Crista Hecht.
Jonghwan Suhr envisions using the pliable manufactured nanocomposites to allow airplanes and aerospace vehicles to cut through the air more efficiently, saving fuel. Photo by Crista Hecht.

Abstract:
Inspired with the speed at which dolphins swim through the water compared to other aquatic life, Jonghwan Suhr of the University of Nevada, Reno, decided to mimic the dolphin's skin using nanotechnology in order to make objects move more efficiently through the air.

Dolphins inspire nanotech work, earn researcher $400K

Reno, NV | Posted on December 31st, 2008

Suhr's research impressed the National Science Foundation, which recently presented him with their most prestigious honor for junior teacher-scholars, a Faculty Early Career Development (CAREER) Program award. The award brings with it $400,000 of funding over five years for his research and teaching.

"These are very competitive and prestigious grants and they are clear evidence of the scholarly potential of the recipient and the excellence of the program," College of Engineering Dean Manos Maragakis said. "The award can have a profound positive effect on the development and the career of the faculty member. It enhances the reputation of the department and the college and gives the opportunity for graduate students to work on state-of-the-art research."

In his groundbreaking research, Suhr, an assistant professor of mechanical engineering, and his colleagues developed new carbon nanotube composite materials with increased strength and damping qualities over conventional materials. Generally, the nanotubes are in a hollow cylindrical shape with nanoscale diameters and microscopic lengths.

"Most materials show compromise between two properties - strength and damping, but this particular system showed an increase in both," Suhr said. In addition, the continuously reinforced nanotube composites are lightweight, flexible, have mechanical robustness, outstanding fatigue resistance, electrical and thermal conductivities and also have tissue-like behavior, he said.

The new nanotube surface material Suhr's research team created, continuous carbon nanotube-polymer composites, will reduce drag force by increasing aerodynamic efficiency. The technology may also be used on wind turbine blades, enhancing the efficiency and reducing noise associated with the renewable energy machines.

Suhr envisions using the pliable manufactured nanocomposites to allow airplanes and aerospace vehicles to cut through the air more efficiently, saving fuel. He is already working with the aircraft company Boeing to investigate creating the artificial skin for wing structures of unmanned air vehicles.

Suhr will work with undergraduate students in his senior capstone course to demonstrate the concept of the artificial skins as a design project. The NSF CAREER award will support Suhr's research and his innovative teaching.

Kwang Kim, chairman of the Mechanical Engineering Department, said in his letter of support for Suhr's CAREER proposal, "his proposed research work regarding Continuous Nanotube Composite structures for bio-mimicking applications is new and will represent one of the most tangible, concrete and promising applications of nanotechnology to realistic mechanical systems in the near future." His work leads to a new frontier in nanotechnology.

Suhr's plan for the new composite also includes applications in which he hopes to make the soft tissue-like material into an electroactive polymer that would eliminate the need for many mechanical parts in a mechanism, to possibly mimic muscles and produce new structural applications.

####

For more information, please click here

Copyright © University of Nevada, Reno

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project