Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum Simulator for Complex Electronic Materials

Abb./©: Univ.-Prof. Dr. Immanuel Bloch, Institut für Physik, Universität Mainz
impression of a fermiotic Mott Insulator: the two colors indicate the different spin states of the atoms
Abb./©: Univ.-Prof. Dr. Immanuel Bloch, Institut für Physik, Universität Mainz impression of a fermiotic Mott Insulator: the two colors indicate the different spin states of the atoms

Abstract:
Researchers from Mainz, Cologne and Jülich simulate complex electronic insulator with ultracold atoms in artificial crystals of light

Quantum Simulator for Complex Electronic Materials

Germany | Posted on December 5th, 2008

The design of new materials with specific properties is an important but demanding challenge in physics and chemistry. Already in 1982 Nobel Prize winner Richard P. Feynman therefore suggested to build a "quantum simulator" in order to understand and predict the properties of complex materials by simulating them using an artificial, but highly controllable quantum system. In the latest issue of the journal Science researchers from the University of Mainz, the University of Cologne and the Forschungszentrum Jülich show how to simulate the properties of electrons in a real crystal by using ultracold fermionic atoms trapped in an artificial crystal formed by interfering laser beams - a so-called optical lattice.

The researchers succeeded in demonstrating one of the most dramatic effects of the electron-electron repulsion: When the interactions between the electrons get too strong, a metal can suddenly become insulating. The resulting so-called Mott-insulator is probably the most important example of a strongly correlated state in condensed matter physics, and it is a natural starting point for the investigation of quantum magnetism. Furthermore, high temperature superconductivity is found to arise in close proximity to it. "Atoms in an optical lattice are a nearly perfect quantum simulator for electrons in a solid, as they offer a very flexible model-system in a clean and well-controlled environment," explains Ulrich Schneider from the University of Mainz.

A direct investigation of complex materials and high temperature superconductors is difficult because of the presence of disorder and many competing interactions in the real crystalline materials. "This makes it very hard to identify the role of specific interactions and, in particular, to decide whether repulsive interactions between fermions alone can explain high temperature superconductivity." In the experiment, a gas of potassium atoms is first cooled down to temperatures near absolute zero. Subsequently, an optical lattice is formed by overlapping several laser beams. To the atoms, the resulting standing-wave field appears as a regular crystal of hundreds of thousands individual micro-traps, similar to an array of optical tweezers. The ultracold atoms, which play the role of electrons in real solids, will line up at the nodes of this standing-wave field.

By investigating the behavior of the atoms under compression and increasing interaction strength, and thereby measuring their compressibility, the experimentalists led by Prof. Immanuel Bloch of the Johannes Gutenberg University Mainz have been able to controllably switch the system between metallic and insulating states of matter and find evidence for a Mott-insulating phase within the quantum gas of fermionic atoms. In such a Mott-insulating phase, the repulsive interactions between the atoms force them to order one-by-one into the regular lattice structure. The observation of the fermionic Mott-insulator in the context of optical lattices opens up a new possibility to simulate and study strongly correlated states and related phenomena. This is affirmed by the excellent agreement achieved in comparing the experiment with theoretical calculations of modern condensed matter theory performed in Cologne and Jülich, which included extensive simulations on the Jülich based supercomputer system JUGENE.

####

For more information, please click here

Contacts:
Professor Dr Immanuel Bloch
Department of Physics
Johannes Gutenberg University
D 55099 Mainz
Tel +49 6131 39-26234
Fax +49 6131 39-25179

Copyright © Johannes Gutenberg University Mainz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project