Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NIST ‘Stress Tests’ Probe Nanoscale Strains in Materials

Confocal Raman microscopy image of stress in a silicon crystal caused by indentation with a 20 micrometer long wedge. The image does not show the silicon but rather the magnitude of stress in the crystal, with compressive stress around the wedge going up from the base line. Vampiric red “fangs” reveal tensile stress associated with cracking at the ends of the indentation.

Credit: Stranick, NIST
Confocal Raman microscopy image of stress in a silicon crystal caused by indentation with a 20 micrometer long wedge. The image does not show the silicon but rather the magnitude of stress in the crystal, with compressive stress around the wedge going up from the base line. Vampiric red “fangs” reveal tensile stress associated with cracking at the ends of the indentation.

Credit: Stranick, NIST

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have demonstrated their ability to measure relatively low levels of stress or strain in regions of a semiconductor device as small as 10 nanometers across. Their recent results* not only will impact the design of future generations of integrated circuits but also lay to rest a long-standing disagreement in results between two different methods for measuring stress in semiconductors.

NIST ‘Stress Tests’ Probe Nanoscale Strains in Materials

GAITHERSBURG, MD | Posted on November 25th, 2008

Mechanical stress and strain in semiconductors and other devices is caused by atoms in the crystal lattice being compressed or stretched out of their preferred positions, a complex—and not always harmful—phenomenon. Stress in the underlying structure of light-emitting diodes and lasers can shift output colors and lower the device's lifetime. Stress in microelectromechanical systems can lead to fracture and buckling that also truncates their lifespan. On the other hand, stress is deliberately built into state-of-the-art microcircuits because properly applied it can increase the speed of transistors without making any other changes to the design. "Stress engineering has allowed the semiconductor industry to increase the performance of devices well beyond what was expected with the current materials set," said NIST research physicist Robert Cook, "thus avoiding the significant engineering problems and expense associated with changing materials."

Both the good and the bad stresses need to be measured, however, if they're to be controlled by device designers. As the component size of microcircuits has become smaller and smaller, this has become more difficult—particularly since two different and widely used methods of stress measurement have been returning disparate results. One, electron back scattered diffraction (EBSD), deduces underlying stress by observing the patterns of electrons scattered back from the crystal planes. The other, confocal Raman microscopy (CRM), measures minute shifts in the frequency of photons that interact with the atomic bonds in the crystal—shifts that change depending on the amount of stress on the bond. The NIST team used customized, highly sensitive versions of both instruments in a series of comparison measurements to resolve the discrepancies.

The key issue, they found, was depth of penetration of the two techniques. Electron beams sample only the top 20 or 30 nanometers of the material, Cook explained, while the laser-generated photons used in CRM might penetrate as deep as a micrometer or more. The NIST researchers found that by varying the wavelength of the Raman photons and positioning the focus of the microscope they could select the depth of the features measured by the Raman technique—and when the CRM was tuned for the topmost layers of the crystal, the results were in close agreement with EBSD measurements.

The NIST instruments also demonstrate the potential for using the two techniques in combination to make reliable, nanoscale measurements of stress in silicon, which enables device developers to optimize materials and processes. EBSD, although confined to near-surface stress, can make measurements with resolutions as small as 10 nanometers. CRM resolution is about 10 times coarser, but it can return depth profiles of stress.

* M.D. Vaudin, Y.B. Gerbig, S.J. Stranick and R.F. Cook. Comparison of nanoscale measurements of strain and stress using electron back scattered diffraction and confocal Raman microscopy. Applied Physics Letters 93, 193116. (2008)

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Michael Baum

(301) 975-2763

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project