Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Targeted Nanoparticles Boost Platinum-Based Anticancer Therapy

Abstract:
A research team from the Massachusetts Institute of Technology (MIT)-Harvard Center for Nanotechnology Excellence has custom-designed nanoparticles that can deliver the anticancer drug cisplatin specifically to prostate cancer cells. The nanoparticles are composed of two different polymers and are decorated with a nucleic acid aptamer that binds to the tumor marker prostate-specific membrane antigen. This aptamer ensures that the nanoparticles deliver their payload only to prostate cancer cells.

Targeted Nanoparticles Boost Platinum-Based Anticancer Therapy

Bethesda, MD | Posted on November 20th, 2008

Stephen Lippard, Ph.D., and Robert Langer, Ph.D., MIT, and Omid Farokhzad, M.D., Harvard Medical School, led the team that developed this new formation of cisplatin. The investigators published their results in the Proceedings of the NationalAcademy of Sciences of the United States of America.

To construct a stable nanoparticle that would only release its toxic cargo inside tumor cells, the investigators synthesized a modified version of cisplatin that includes a long hydrocarbon chain. As the nanoparticle forms, the hydrocarbon chain associates strongly with the hydrophobic chains of the polymer that forms the nanoparticle's core. The researchers note that the hydrocarbon chain they chose optimizes both drug encapsulation and drug release inside tumor cells. Once the nanoparticle enters the cell, the modified drug is converted into its active form as a result of chemical conditions inside the cell.

Tests with human cancer cells growing in culture showed that these nanoparticles were taken up specifically by tumor cells and not by healthy cells. Nanoparticles lacking the targeting aptamer were not taken up either. These tests also demonstrated that the nanoparticles release their cargo over the course of 60 hours, providing a sustained lethal level of the drug inside the targeted cells. In addition, the nanoparticle formulation was approximately 100 times more effective at killing tumor cells than was cisplatin by itself.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles.”

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Nanomedicine

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Discoveries

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project