Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Targeted Nanoparticles Boost Platinum-Based Anticancer Therapy

Abstract:
A research team from the Massachusetts Institute of Technology (MIT)-Harvard Center for Nanotechnology Excellence has custom-designed nanoparticles that can deliver the anticancer drug cisplatin specifically to prostate cancer cells. The nanoparticles are composed of two different polymers and are decorated with a nucleic acid aptamer that binds to the tumor marker prostate-specific membrane antigen. This aptamer ensures that the nanoparticles deliver their payload only to prostate cancer cells.

Targeted Nanoparticles Boost Platinum-Based Anticancer Therapy

Bethesda, MD | Posted on November 20th, 2008

Stephen Lippard, Ph.D., and Robert Langer, Ph.D., MIT, and Omid Farokhzad, M.D., Harvard Medical School, led the team that developed this new formation of cisplatin. The investigators published their results in the Proceedings of the NationalAcademy of Sciences of the United States of America.

To construct a stable nanoparticle that would only release its toxic cargo inside tumor cells, the investigators synthesized a modified version of cisplatin that includes a long hydrocarbon chain. As the nanoparticle forms, the hydrocarbon chain associates strongly with the hydrophobic chains of the polymer that forms the nanoparticle's core. The researchers note that the hydrocarbon chain they chose optimizes both drug encapsulation and drug release inside tumor cells. Once the nanoparticle enters the cell, the modified drug is converted into its active form as a result of chemical conditions inside the cell.

Tests with human cancer cells growing in culture showed that these nanoparticles were taken up specifically by tumor cells and not by healthy cells. Nanoparticles lacking the targeting aptamer were not taken up either. These tests also demonstrated that the nanoparticles release their cargo over the course of 60 hours, providing a sustained lethal level of the drug inside the targeted cells. In addition, the nanoparticle formulation was approximately 100 times more effective at killing tumor cells than was cisplatin by itself.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles.”

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project