Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Carbon Nanotubes Improve Protein Array Detection Limits

Abstract:
To detect cancer as early as possible, dozens of research groups are developing methods to detect trace levels of cancer-related proteins and genes in blood or other biological samples. Those efforts should get a boost thanks to new research results showing that carbon nanotubes can serve as incredibly sensitive optical labels for use in a wide variety of assay systems.

Carbon Nanotubes Improve Protein Array Detection Limits

Bethesda, MD | Posted on November 20th, 2008

Reporting its work in the journal Nature Biotechnology, a research team headed by Hongjie Dai, Ph.D., Stanford University and the Center for Cancer Nanotechnology Excellence Focused on Therapeutic Response, describes a new type of coating developed specifically for attaching any number of different types of targeting agents to the surface of single-walled carbon nanotubes. This coating, a branched form of the biocompatible polymer poly(ethylene glycol) (PEG), enabled the investigators to readily couple antibodies to carbon nanotubes. In the experiments reported in their current paper, the antibodies were designed to identify specific proteins immobilized on a standard protein array microchip.

Carbon nanotubes can function as bright Raman optical tags that are readily detected when irradiated with light. Experiments comparing the lower limits of protein detection using an antibody-labeled carbon nanotube tag and a standard fluorescence tag showed that the carbon nanotube-enabled assay was at least 1,000 times more sensitive than the fluorescence assay. At least part of this improvement resulted from the almost total elimination of background fluorescence that can confound other detection schemes. In addition, the investigators found that the Raman tags were useful over a larger range of concentrations, ranging from 10 nanomoles to 1 femtomoles. The investigators note in their paper that the coating they developed also should enable them to create Raman tags that can detect nucleic acids and other types of biomolecules.

Meanwhile, a second group of investigators, led by Beatrice Knudsen, M.D., Ph.D., Fred Hutchinson Cancer Research Center, and Selena Chan, Ph.D., Intel Corporation, has developed a mathematical technique for analyzing the specific spectral output of different Raman probes, making it possible to create highly multiplexed assays using these probes. Unlike traditional fluorescent labels that typically absorb and emit light in a very narrow band of frequencies, Raman probes generate complex frequency spectra that are chock-full of information.

The Knudsen-Chan team, which published its results in the journal ACS Nano, developed a method for sorting out the various spectral peaks associated with individual nanoscale Raman probes that were part of a mixture of these probes. Each probe was designed to bind to a different biomolecule. In one experiment, the investigators were able to decipher a complex Raman spectrum that included the optical emission from three different Raman probes and thereby determine the amount of each probe in the mixture. The researchers note that their method for spectral analysis is exceedingly simple to conduct and is amenable to high-throughput analysis in any type of multiplexed assay system.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Protein microarrays with carbon nanotubes as multicolor Raman labels.”

View abstract - “Spectral analysis of multiplex Raman probe signatures.”

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project