Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Clemson researchers advance nano-scale electromechanical sensors

Abstract:
Clemson physics professor Apparao Rao and his team are researching nano-scale cantilevers that have the potential to read and alert us to toxic chemicals or gases in the air. Put them into a small handheld device and the potential is there for real-time chemical alerts in battle, in industry, in health care and even at home.

"The ability to build extremely small devices to do this work has been something we've only seen so far in science-fiction movies," Rao said.

Clemson researchers advance nano-scale electromechanical sensors

Clemson, SC | Posted on November 11th, 2008

The width of a human hair or smaller, the micro- and nano-scale cantilevers look like tiny diving boards under an electron microscope. The researchers have advanced the method of oscillating cantilevers that vibrate much like a guitar string and measure amplitude and frequency under different conditions, creating highly reliable sensors that can relay a message that there's trouble in the air.

"The current way of sensing involves an optical method that uses a relatively bulky and expensive laser beam that doesn't translate well to use in nano-scale cantilevers. Our method is fully electrical and uses a small AC voltage to vibrate the cantilever and simple electronics to detect any changes in the vibration caused by gaseous chemical or biological agents," Rao said. "This method enables the development of handheld devices that would beep or flash as they read gas and chemical levels on site."

The potential applications are varied, he said. In addition to simultaneously reading multiple kinds of toxins in the environment, these electromechanical sensors have been shown to measure changes in humidity and temperature.

Preliminary results indicate that this fully electrical sensing scheme is so sensitive that it can differentiate between hydrogen and deuterium gas, very similar isotopes of the same element. Since the whole process is electrical, the size limitations that plague competing detection methods are not a problem here. The cantilevers can be shrunk down to the nano-scale and the operating electronics can be contained on a single tiny chip. Rao's research has shown that a single carbon nanotube can be used as a vibrating cantilever.

Rao credits Clemson Professor Emeritus of Physics Malcolm Skove, who discovered that measuring the resonant frequency of a cantilever at the second or higher harmonies would get rid of the so-called parasitic capacitance, an unwanted background that obscures the signal and has been a major stumbling block to the advancement of similar technology.

"When we operate at these higher harmonics of the resonant frequency, we get extremely clean signals. It makes a tremendous difference, and the National Institute for Standards and Technology is interested in promoting the Clemson method as one of the standard methods for measuring the stiffness of cantilevered beams," said Rao.

The research was funded for $500,000 over four years from the National Science Foundation and the Department of Defense. To view published papers on the research go to:
people.clemson.edu/~arao/E-papers/HDR%20package.pdf.

####

About Clemson University
Today, Clemson is redefining the term “top-tier research university” by combining the best of two models: the scientific and technological horsepower of a major research university and the highly engaged academic and social environment of a small college. With a distinctive governance system that fosters stability in leadership, unique college structures that create an unmatched climate for collaboration, and a driven, competitive spirit that encourages faculty, staff and students to embrace bold, sometimes audacious, goals, Clemson has set its sights on being one of the nation’s top-20 public universities by 2011.

That vision — first outlined by President James F. Barker ’70 and officially adopted by the Board of Trustees in 2001 — has united members of the Clemson Family who understand what it takes to be a top research university and what Clemson’s success will mean for students, for South Carolina and for society.

For more information, please click here

Contacts:
Bevan Elliott
864-656-4447


Apparao Rao
864-656-6758


WRITER:
Susan Polowczuk
864-656-2063

Copyright © Clemson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Home

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project