Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Near-Infrared Nanoparticles Shine a Bright Light on Cancer

Abstract:
A new nanoparticle-enabled imaging method for breast cancer has been developed by a team of scientists from Penn State. Their research, utilizing encapsulated fluorescent molecules in calcium phosphate nanoparticles and nontoxic near infrared (NIR) imaging, appears in the journal ACS Nano.

Near-Infrared Nanoparticles Shine a Bright Light on Cancer

Bethesda, MD | Posted on October 27th, 2008

More effective early detection of diseases is one of the promises of nanotechnology. Current imaging methods, such as x-rays and magnetic resonance imaging, are limited in the size of tumors they can detect in the depth they can penetrate the body, and by their potential side effects. Another promising imaging technique, NIR bioimaging, is a noninvasive, painless, and nonionizing form of radiation that operates at wavelengths just above that of visible light. By combining NIR imaging with nanoparticles containing an NIR fluorescing dye, indocyanine green, the researchers were able to detect 5-mm diameter breast cancer tumors in a live mouse model over a period of 4 or more days.

Indocyanine green is the only NIR organic dye approved by the FDA for use in the human body. The nanoparticles, which are around 20 nanometers in diameter, are made of calcium phosphate, a biocompatible material that has long been used as a bone replacement. Unlike other nanoparticles considered for imaging and drug delivery, the biodegradable components of calcium phosphate nanoparticles are already widely present in the bloodstream.

In addition to the combination of NIR imaging and nanoparticles, a second innovation is the development of a fundamentally new method for processing nanoparticulates. The process is called van der Waals high-performance liquid chromatography.

Materials scientist Jim Adair, Ph.D., whose team synthesized the particles, said, "Our technique takes advantage of the large van der Waals forces associated with particles, as opposed to the small van der Waals forces associated with molecules, atoms, and ions. The hard part in the synthesis was making sure the particles did not clump together. The critical stage was the laundering of all the nonessential byproducts associated with the synthesis. By the end, we had a very clean suspension of particles in which all the spectator ions, molecules, and atoms had been washed away from the basic nanoparticles."

Dr. Adair's group then teamed with Mark Kester, Ph.D., and his colleagues to demonstrate that their nanoparticles provide the fluorescent dye with 200-percent greater photoefficiency compared with indocynine green injected into the bloodstream, with a 500-percent greater photostability. In a separate experiment discussed in the paper, the researchers were able to image through 3 centimeters of dense pig muscle tissue, which should correlate to at least 10 centimeters, and likely much deeper, in patients, according to Dr. Adair. The investigators then injected these nanoparticles into mice with implanted human breast tumors and were able to image 5-m diameter tumors within 24 hours after injection.

####

About National Cancer Institute
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Near-Infrared Emitting Fluorophore-Doped Calcium Phosphate Nanoparticles for In Vivo Imaging of Human Breast Cancer.”

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project