Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researcher Looks For Better Way to Kill Cancer Cells

Professor Diandra Leslie-Pelecky uses this deposition chamber to make nanoparticles.  The operation resembles the process that occurs when a piece of glass is placed over boiling water, except that instead of steam, it condenses metal vapor.
Professor Diandra Leslie-Pelecky uses this deposition chamber to make nanoparticles. The operation resembles the process that occurs when a piece of glass is placed over boiling water, except that instead of steam, it condenses metal vapor.

Abstract:
NIH Award Helps Fund Study of Treatments Using Magnetic Nanoparticles

Researcher Looks For Better Way to Kill Cancer Cells

Dallas, TX | Posted on October 13th, 2008

Physics Professor Diandra Leslie-Pelecky brought more with her when she arrived at UT Dallas than expertise in nanotechnology and shiny behemoth lab equipment. She brought an award for $84,000 from the National Institutes of Health via the Cleveland Clinic.

"This avenue of research focuses on treatments for breast cancer and prostate cancer," Leslie-Pelecky said. "These cancers usually present tumors that are close to the skin. If we can deliver magnetic, cancer-fighting drugs directly to these tumors—and if we can keep the drugs in place at the tumor sites with magnets—we can avoid some of the side-effects of giving people cancer drugs that end up distributed through their entire body."

Leslie-Pelecky said the basic principles of this treatment are established, but a few roadblocks remain.

"One challenge is making nanoparticles that are more magnetic," she said. "We really have to understand the basic physics at work so we can design strongly magnetic nanoparticles. We're fighting blood flow that will carry treatments away from tumors, so we need stronger magnetic nanoparticles that will stay in place, and keep the chemotherapy drugs in place, when we hold a magnet on the outside of the skin."

Another possible roadblock the research team faced was determining whether iron-oxide nanoparticles presented any harmful effects inside the body. The study concluded that the MNPs generated didn't cause long-term changes in liver enzyme levels or induce oxidative stress and were therefore safe for drug delivery or other applications.

Leslie-Pelecky custom tailors iron oxide nanoparticles in a stainless steel deposition chamber housed in her lab at UT Dallas. Labhasetwar supplies the medical expertise for their collaboration, while Leslie-Pelecky focuses on magnetic nanotechnology and precisely manufacturing the research particles.

The collaboration resulted in a paper, published in Molecular Pharmaceutics, that was recently cited among the most-accessed articles in the first quarter of 2008.

####

For more information, please click here

Contacts:
Brandon V. Webb
UT Dallas
(972) 883-2155


Office of Media Relations
UT Dallas
(972) 883-2155

Copyright © UT Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project