Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How to halt immune cell activation

Figure 1: Interaction between TCR, CD3 and LAPTM5. Left, CD3ζ (blue) is localized on the plasma membrane whereas LAPTM5 (green) and the lysosome-associated protein LAMP1 (red) are in the lysosomes in T cells before stimulation. Right, after TCR stimulation (α-CD3), CD3ζ moves to the lysosomal compartment where it co-localizes with LAPTM5 and LAMP1 and is degraded.
Reproduced, with permission, from Ref. 1 © 2008 Elsevier Inc.
Figure 1: Interaction between TCR, CD3 and LAPTM5. Left, CD3ζ (blue) is localized on the plasma membrane whereas LAPTM5 (green) and the lysosome-associated protein LAMP1 (red) are in the lysosomes in T cells before stimulation. Right, after TCR stimulation (α-CD3), CD3ζ moves to the lysosomal compartment where it co-localizes with LAPTM5 and LAMP1 and is degraded. Reproduced, with permission, from Ref. 1 © 2008 Elsevier Inc.

Abstract:
A new study sheds light on the molecular machinery required for reining in cellular signals that, if unleashed, could result in pathological inflammation

How to halt immune cell activation

Japan | Posted on October 10th, 2008

Researchers in Japan have identified part of the mechanism responsible for preventing prolonged—and potentially dangerous—activation of immune cells called T lymphocytes1. Each decorated with a unique surface receptor (TCR) capable of detecting pathogenic foreign proteins, T lymphocytes circulate throughout the body patrolling for invading microorganisms. Upon encounter with rogue proteins, TCRs trigger—via a complex of CD3 signaling proteins—intracellular events that orchestrate release of pro-inflammatory mediators called cytokines.

As unrestrained inflammation can cause tissue damage, the immune system exerts tight control over T lymphocyte activation. During healthy conditions, TCR and CD3 proteins are constantly internalized and released back to the lymphocyte surface; this ‘recycling' maintains a low level of TCR expression and thus a high ‘threshold' precluding unwarranted activation. After stimulation, however, TCRs and CD3 subunits are routed towards destructive intracellular compartments called lysosomes, where they are degraded as part of a signal ‘shut off' mechanism.

A team led by Ji-Yang Wang of the RIKEN Center for Allergy and Immunology in Yokohama sought to identify proteins underpinning this ‘fail safe' TCR signal termination process.

Having noted in previous experiments that expression of the lysosomal protein LAPTM5 is altered after TCR stimulation, the researchers tested whether LAPTM5 is involved in turning off TCR signals. They used genetic manipulation techniques to generate mutant mice in which the Laptm5 gene is not expressed. These Laptm5-deficient animals exhibited excessive T lymphocyte-driven responses to skin sensitization.

The team also found that, compared to normal T lymphocytes, LAPTM5-deficient T lymphocytes underwent more cell divisions, and released the cytokines interferon-γ and interleukin-2 more frequently after TCR stimulation. After activation, T lymphocytes lacking LAPTM5 expressed higher amounts of surface and intracellular TCR and a CD3 subunit, CD3ζ, than did wild-type T lymphocytes. Conversely, overexpression of LAPTM5 dampened CD3ζ expression.

TCR and CD3ζ proteins co-localized with LAPTM5 in lysosomes of activated T cells, and LAPTM5 physically interacted with CD3ζ (Fig. 1). These findings indicate that LAPTM5 might promote CD3ζ degradation by binding to and shuttling this protein to lysosomes.

Whether LAPTM5 cooperates with other lysosomal proteins to orchestrate CD3ζ destruction, and whether any human immune disorders are associated with mutations in Laptm5, remains to be determined.

LAPTM5 is the first lysosomal protein known to be specifically expressed in blood-generating (hematopoietic) cells. "In addition to its role in the negative regulation of TCR signaling, preliminary studies indicate that LAPTM5 may regulate the cell surface expression of additional immune receptors and may also function to prevent hematopoietic malignancies," says Wang.
Reference

1. Ouchida, R., Yamasaki, S., Hikida, M., Masuda, K., Kawamura, K., Wada, A., Mochizuki, S., Tagawa, M., Sakamoto, A., Hatano, M., Tokuhisa, T., Koseki, H., Saito, T., Kurosaki, T. & Wang, J.Y. A lysosomal protein negatively regulates surface T cell antigen receptor expression by promoting CD3ζ-chain degradation. Immunity 29, 33-43 (2008).

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project