Home > News > Hitachi, University Prototypes Low-damage Electron Analysis Microscope
July 30th, 2008
Hitachi, University Prototypes Low-damage Electron Analysis Microscope
Abstract:
Hitachi Ltd and Hokkaido University prototyped an electron analysis microscope that produces an enlarged image by irradiating an electron beam from a scanning electron microscope (SEM) to a specimen and analyzing the diffraction pattern of the scattered light.
Because the output of the electron beam is as low as 30keV, light element materials such as carbon can be observed without damage to the specimen. Unlike existing microscopes, distortion from aberration is limited in the prototype, because it does not use imaging lens.
"The actual prototype of an analysis microscope without an imaging lens is the first in the world," said professor Kazutoshi Gohara of Hokkaido University Graduate School of Engineering. The nanotube specimen was observed at 0.34nm resolution, according to Gohara.
In general, a transmission electron microscope (TEM), in which parallel electron beams of approximately 100keV irradiate a specimen, is used for electron level observation. However in this method, because of the high energy, damages such as displacement of atoms could occur in the specimens, making long-time or repeated observation difficult. In addition, distortion and blur due to aberration of lens are likely to occur, because images are enlarged by a imaging lens.
Source:
techon.nikkeibp.co.jp
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Tools
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||