Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Zetasizer Nano helps establish size independence in DNA driven nanoparticle structuring

Abstract:
A research team led by Dr Oleg Gang at the Brookhaven Center for Functional Nanomaterials (CFN) in New York is using the Zetasizer Nano particle characterization system from Malvern Instruments in ground-breaking work that has demonstrated successful DNA-guided formation of ordered 3-D crystalline structures. DNA's natural ability to self-assemble according to pre-programmed genetic codes within its pairing bases makes it the perfect architectural device for construction of novel crystalline structures. The ability to engineer such 3-D structures enables the production of functional materials that take advantage of the unique properties that may exist at the nanoscale - for example, enhanced magnetism, improved catalytic activity, or new optical properties.

Zetasizer Nano helps establish size independence in DNA driven nanoparticle structuring

Malvern, UK | Posted on July 24th, 2008

Dr. Gang and his team have succeeded in building open, DNA stabilized 3D ordered structures and clusters from nanoparticles. This structure will be also able to incorporate additional small molecules, proteins or polymers within a 3D matrix. They achieved this by tuning the balance, between the attractive force provided by complementary outer-shell DNA regions with the repulsive force of non-complementary DNA or inner-shell DNA spacers. The resulting interactions lead to various morphologies of assemblies, including particle organization with crystalline order and regulated clustering, containing from millions to single particles per cluster.

DNA-guided self-assembly of nanoparticles is predominantly controlled by the surface fraction of DNA on each particle, irrespective of particle size. The Dynamic Light Scattering (DLS) kinetic profiles and aggregate size distribution data provided by the Zetasizer Nano, together with information from other techniques, were used in sample analysis. The results demonstrate that any particle size increase resulting from increased average surface coverage of DNA strands is balanced by a loss in entropic interDNA interaction due to an increase in the particle's surface curvature.

Malcolm Connah, Product Manager Nanometrics at Malvern Instruments, is delighted that the Zetasizer Nano is being used in such inspirational research. "The work of Dr Gang and his team lays the foundation for numerous and diverse advances in nanotechnology," he said. "This is an exciting prospect and Malvern is very pleased that the Zetasizer Nano is making such a valuable contribution."

####

About Malvern Instruments Ltd
Malvern Instruments provides a range of complementary materials characterization tools that deliver inter-related measurements reflecting the complexities of particulates and disperse systems, nanomaterials and macromolecules. Analytical instruments from Malvern are used in the characterization of a wide variety of materials, from industrial bulk powders to the latest nanomaterials and delicate macromolecules. A broad portfolio of innovative technologies is combined with intelligent, user-friendly software. These systems deliver industrially relevant data enabling our customers to make the connection between micro (such as particle size) and macro (bulk) material properties (rheology) and chemical composition (chemical imaging).

Particle size distribution, particle shape information, zeta potential, molecular weight, chemical composition, and bulk materials properties can all be determined with instruments from the Malvern range. The company’s laboratory, at-line, on-line and in-line solutions are proven in sectors as diverse as cement production and pharmaceutical drug discovery.

Headquartered in Malvern, UK, Malvern Instruments has subsidiary organizations in all major European markets, North America, China, Korea and Japan, a joint venture in India, a global distributor network and applications laboratories around the world.

For more information, please click here

Contacts:
Trish Appleton
Kapler Communications
Knowledge Centre
Wyboston Lakes
Great North Road,
Wyboston
Bedfordshire
MK44 3BY
UK
T: +44 (0)1480 479280;
F: +44 (0)1480 470343


USA contact:

Marisa Fraser
Malvern Instruments Inc
117 Flanders Road
Westborough
MA 01581-1042
USA
Tel: +1 508 768 6400
Fax: +1 508 768 6403




Please send sales enquiries to:

Alison Vines
Malvern Instruments Ltd
Enigma Business Park
Grovewood Road
Malvern
Worcestershire
WR14 1XZ
UK
Tel: +44 (0) 1684 892456;
Fax: +44 (0) 1684 892789

Copyright © Malvern Instruments Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Tools

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Nanobiotechnology

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project