Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Using nanotechnology to create high-performance materials

Abstract:
The polymer researchers at the GKSS Research Centre in Geesthacht (Germany) expected about 30 scientists to attend the kick-off meeting of the new EU project HARCANA (High Aspect Ratio for Carbon-based Nanocomposites). New kinds of plastic-based nanocomposites could be used to develop lightweight materials that would increase the mechanical stability of materials and add electrical or magnetic properties, for example.

Using nanotechnology to create high-performance materials

Germany | Posted on July 23rd, 2008

The European Commission is providing approximately EUR 5 million in funding for the project, including more than EUR1.05 million earmarked directly for the Helmholtz researchers at GKSS. The project is being coordinated from Geesthacht by the director of the Institute of Polymer Research, Prof. Volker Abetz. 'One of the aims of our first meeting will be to discuss the current state of materials development and the steps that need to be taken, especially with regard to the materials' subsequent applications,' says Abetz. Because the new composites do not build up an electrostatic charge and are electrical conductors, they could be used for petrol fuel lines in automobiles, for example, as well as for special packaging materials and membranes.

The HARCANA project is run by a consortium of 11 partners, including the renowned University of Liege in Belgium, the French engineering school ESPCI (Ecole superieure de physique et de chimie industrielles de la ville de Paris), the CSIC (Consejo Superior de Investigaciones Cientificas, Spain's largest public research institute) and the industrial partners Deutsche Borsig GmbH and GMT Membranetechnik GmbH (GMT).

The HARCANA project is organised into 11 work packages, including one headed by GKSS researcher Dr Adriana Boschetti-de-Fierro. The scientist is investigating materials such as carbon nanotubes, which generally have walls only a few carbon atoms thick. Carbon nanotubes are a recent development with unique properties, one of the most notable being the new material's conductivity. In addition, carbon nanotubes help to increase the strength, rigidity and break resistance of plastic. Although carbon nanotubes are 20 times stronger than steel, they are as light as aluminium.

Boschetti-de-Fierro points out, however, that despite the current euphoria, 'composites with carbon nanotubes are still under development. One of the issues we are currently looking into is how to distribute these nanofibres evenly in the plastic at the molecular level.' This is difficult because nanotubes tend to stick to one another and clump together. At present, this clumping makes the new material rapidly lose its special properties.

####

About Helmholtz Association of German Research Centres
The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research areas. With 26,500 employees in 15 research centres is the Helmholtz Association Germany’s largest scientific organisation.

For more information, please click here

Contacts:
Bonn Office

Helmholtz Association

Ahrstraße 45
53175 Bonn

Phone: +49 228 30818-0
Fax: +49 228 30818-30
org(at)helmholtz.de

Copyright © Helmholtz Association of German Research Centres

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project