Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotechnology, Biomolecules, and Light Unite to “Cook” Cancer Cells

Abstract:
Using carbon nanotubes linked to tumor-homing antibodies, a research team headed by Ellen Vitetta, Ph.D., M.D., of the University of Texas Southwestern Medical Center has shown that they can specifically kill the targeted tumor cells using near-infrared light. This work appears in the Proceedings of the National Academy of Sciences.

Nanotechnology, Biomolecules, and Light Unite to “Cook” Cancer Cells

Bethesda , MD | Posted on July 9th, 2008

In this study, the investigators used monoclonal antibodies that targeted specific sites on lymphoma cells to coat carbon nanotubes. When exposed to near-infrared light, carbon nanotubes generate significant amounts of heat that can kill cells.

In cultures of cancerous lymphoma cells, the antibody-coated nanotubes attached to the cells' surfaces. When the targeted cells were then exposed to near-infrared light, the nanotubes heated up, generating enough heat to essentially "cook" the cells and kill them. Nanotubes coated with an unrelated antibody neither bound to nor killed the tumor cells.

"Using near-infrared light for the induction of hyperthermia is particularly attractive because living tissues do not strongly absorb radiation in this range," said Dr. Vitetta. "Once the carbon nanotubes have bound to the tumor cells, an external source of near-infrared light can be used to safely penetrate normal tissues and kill the tumor cells."

The use of carbon nanotubes to destroy cancer cells with heat is being explored by several research groups, but the new study is the first to show that both the antibody and the carbon nanotubes retained their physical properties and their functional abilities, binding to and killing only the targeted cells. This was true even when the antibody-nanotube complex was placed in a setting designed to mimic conditions inside the human body.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580


Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project