Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New ORNL Process Brings Nanoparticles Into Focus

Abstract:
Scientists can study the biological impacts of engineered nanomaterials on cells within the body with greater resolution than ever because of a procedure developed by researchers at the Department of Energy's Oak Ridge National Laboratory.

New ORNL Process Brings Nanoparticles Into Focus

Oak Ridge, TN | Posted on July 1st, 2008

The method, detailed in the current issue of Nature Nanotechnology, uses scanning near-field ultrasonic holography to clearly see nanoparticles residing within cells of laboratory mice that had inhaled single-walled carbon nanohorns. Nanohorns are short, horn-shaped tubular structures capped with a conical tip.

"While carbon-based materials have countless potential uses, we need to know how they interact within a cell - and whether they are able to penetrate cells," said Laurene Tetard, lead author and a member of ORNL's Biosciences Division. "We found that these nanohorns can indeed get into cells."

With this new tool, researchers will be able to determine whether a cell's shape changes because of nanomaterials such as the nanohorns used for this study. Tetard and co-authors expect this work to be of significant benefit to scientists studying drug delivery systems, nanotoxicology and interactions between engineered nanomaterials and biological systems.

"The rising commercial use of engineered nanoparticles and the ensuing need for large-scale production pose a risk of unintended human exposure that may impact health," the authors wrote. "Central to this issue is the ability to determine the fate of nanoparticles in biological systems and in more details their route after inhalation."

In contrast to conventional imaging techniques, scanning near-field ultrasonic holography provides a detailed look inside a cell, providing nanometer resolution.

"Conventional atomic force microscopy using a cantilever tip can only probe the surface of a specimen, making it difficult to analyze structures that are inside a cell," Tetard said. "Our method benefits from all of the advantages of a standard atomic force microscope but provides access to some of the features buried inside the cell."

Ultimately, this new imaging capability could help advance the field of nanoparticles-cell interactions. In addition to the high-resolution subsurface imaging and localization of nanoparticles in biological samples, scanning near-field ultrasonic holography allows for minimal sample preparation and requires no labeling with radioisotopes. The technique also offers relatively high throughput sample analysis, which enables researchers to image many cells quickly.

"The scanning near-field ultrasonic holography method should be especially useful for determining the efficacy of cell type-specific drug targeting, which is a critical goal for medical uses of nanomaterial," wrote the authors, who expect their results to help resolve critical questions about the fate and potential toxicity of nanoparticles within the body.

Co-authors of the paper, titled "Imaging nanoparticles in cells by nanomechanical holography," are Ali Passian, Katherine Venmar, Rachel Lynch, Brynn Voy and Thomas Thundat of ORNL and Gajendra Shekhawat and Vinayak Dravid of Northwestern University. Researchers at ORNL's Center for Nanophase Materials Sciences provided nanohorns for this work.

Funding was provided by the Department of Energy Office of Science, Biological and Environmental Research and by the Laboratory Directed Research and Development program. UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

####

About ORNL
As we celebrate ORNL's historical achievements, our challenge is to build on Alvin Weinberg's notion of a laboratory whose mission evolves and strengthens over time. To that end, we continue to build on ORNL's historic competencies in energy, life sciences, neutron sciences and advanced materials while adding new research missions in the areas of national security and high-performance computing. Equally important, we are literally rebuilding ORNL by undertaking a $300-million modernization program that will maintain our laboratory as one of the world's leading scientific research centers.

For more information, please click here

Contacts:
Ron Walli
Communications and External Relations
865.576.0226

Copyright © ORNL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project