Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > MIT team develops better X-ray nanomirrors: Nanotechnology will enhance future telescopes

Gratings used to manipulate X-rays for future space telescopes and other applications, like tiny miniaturized venetian blinds, were created using this interference lithography patterning tool, called the nanoruler, developed at MIT's Space Nanotechnology Laboratory. The colorful, diffracting wafer at center has a diameter of 12 inches. Photo / Ralf Heilmann
Gratings used to manipulate X-rays for future space telescopes and other applications, like tiny miniaturized venetian blinds, were created using this interference lithography patterning tool, called the nanoruler, developed at MIT's Space Nanotechnology Laboratory. The colorful, diffracting wafer at center has a diameter of 12 inches. Photo / Ralf Heilmann

Abstract:
A new way of bending X-ray beams developed by MIT researchers could lead to greatly improved space telescopes, as well as new tools for biology and for the manufacture of semiconductor chips.

MIT team develops better X-ray nanomirrors: Nanotechnology will enhance future telescopes

Cambridge, MA | Posted on June 10th, 2008

X-rays from space provide astronomers with important information about the most exotic events and objects in our universe, such as dark energy, black holes and neutron stars. But X-rays are notoriously difficult to collect and many interesting cosmic sources are faint, which makes collecting these high-energy rays difficult and time-consuming, even with telescopes on satellites far above our X-ray-absorbing atmosphere.

Now a group of researchers from MIT has fabricated a new, highly efficient nanoscale Venetian-blind-like device that contains thousands of ultrasmooth mirror slats per millimeter for use in future improved space-based X-ray telescopes. The so-called Critical-Angle Transmission (CAT) gratings feature dense arrays of tens-of-nanometer-thin, freely suspended silicon structures that serve as efficient mirrors for the reflection and diffraction of nanometer-wavelength light--otherwise known as X-rays.

New instrument designs based on these gratings could also lead to advances in fields beyond astrophysics, from plasma physics to the life and environmental sciences, as well as in extreme ultraviolet lithography, a technology of interest to the semiconductor industry. The concept behind CAT gratings might also open new avenues for devices in neutron optics and for the diffraction of electrons, atoms and molecules.

Based on an invention by Ralf Heilmann and Mark Schattenburg of the Space Nanotechnology Laboratory (SNL) at the MIT Kavli Institute of Astrophysics and Space Research, the daunting fabrication challenges were overcome by graduate student Minseung Ahn of the Department of Mechanical Engineering at MIT in a yearlong effort, with the help of financial support from NASA and a Samsung Fellowship.

Motivated by technology goals for NASA's next-generation X-ray telescope, called Constellation-X, the new devices promise to improve more than five-fold upon the efficiency of the transmission gratings on board NASA's Chandra X-Ray Observatory (launched in 1999), which were also built at the Space Nanotechnology Lab. The reason for this improvement lies in the fact that in the new design, X-rays are reflected very efficiently at very shallow angles--akin to skipping stones on water--from the sub-nanometer-smooth sidewalls of the silicon slats, through the spaces between the slats. Also, in the earlier version the X-rays had to pass through a supporting substrate of polyimide, which absorbed many of the rays and reduced the grating's efficiency.

The silicon slats--as thin as 35 nanometers, which is comparable to the smallest feature sizes still under development in commercial computer chip manufacturing--are parallel to each other and separated by as little as about 150 nanometers. The slats have to extend many micrometers in the remaining two dimensions. "Imagine a thin, 40-foot-long, 8-foot-tall mirror, with surface roughness below a tenth of a millimeter," says Heilmann. "Then put tens of thousands of these mirrors next to each other, each spaced precisely an inch from the next. Now shrink the whole assembly--including the roughness--down by a factor of a million, and you have a good CAT grating."

Recent X-ray test results from a prototype device, obtained with the help of Eric Gullikson of Lawrence Berkeley National Laboratory, confirmed that it met theoretical expectations. The results of this work will be published in Optics Express (Vol. 16, No. 12) on June 9. They were also presented at the 52nd Intl. Conference on Electron, Ion and Photon Beam Technology and Nanofabrication in Portland, Ore., on May 28, and will be presented again at the SPIE Conference on Astronomical Telescopes and Instrumentation in Marseille, France, on June 23.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Elizabeth A. Thomson
MIT News Office
Phone: 617-258-5402

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project