Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Research Measures Movement of Nanomaterials in Simple Model Food Chain

Photomicrograph of ciliate T. pyriformis (l.) during cell division with accumulated quantum dots appearing red and closeup photomicrograph of rotifer B. calyciflorus (r., whole organism seen in upper left corner) with quantum dots assimilated from ingested ciliates appearing red.

Credit: NIST
Photomicrograph of ciliate T. pyriformis (l.) during cell division with accumulated quantum dots appearing red and closeup photomicrograph of rotifer B. calyciflorus (r., whole organism seen in upper left corner) with quantum dots assimilated from ingested ciliates appearing red.
Credit: NIST

Abstract:
New research* shows that while engineered nanomaterials can be transferred up the lowest levels of the food chain from single celled organisms to higher multicelled ones, the amount transferred was relatively low and there was no evidence of the nanomaterials concentrating in the higher level organisms. The preliminary results observed by researchers from the National Institute of Standards and Technology (NIST) suggest that the particular nanomaterials studied may not accumulate in invertebrate food chains.

Research Measures Movement of Nanomaterials in Simple Model Food Chain

GAITHERSBURG, MD | Posted on May 31st, 2008

The same properties that make engineered nanoparticles attractive for numerous applications—biological and environmental stability, small size, solubility in aqueous solutions and lack of toxicity to whole organisms—also raise concerns about their long-term impact on the environment. NIST researchers wanted to determine if nanoparticles could be passed up a model food chain and if so, did the transfer lead to a significant amount of bioaccumulation (the increase in concentration of a substance in an organism over time) and biomagnification (the progressive buildup of a substance in a predator organism after ingesting contaminated prey).

In their study, the NIST team investigated the dietary accumulation, elimination and toxicity of two types of fluorescent quantum dots using a simple, laboratory-based food chain with two microscopic aquatic organisms—Tetrahymena pyriformis, a single-celled ciliate protozoan, and the rotifer Brachionus calyciflorus that preys on it. The process of a material crossing different levels of a food chain from prey to predator is called "trophic transfer."

Quantum dots are nanoparticles engineered to fluoresce strongly at specific wavelengths. They are being studied for a variety of uses including easily detectable tags for medical diagnostics and therapies. Their fluorescence was used to detect the presence of quantum dots in the two microorganisms.

The researchers found that both types of quantum dots were taken in readily by T. pyriformis and that they maintained their fluorescence even after the quantum dot-containing ciliates were ingested by the higher trophic level rotifers. This observation helped establish that the quantum dots were transferred across the food chain as intact nanoparticles and that dietary intake is one way that transfer can occur. The researchers noted that, "Some care should be taken, however, when extrapolating our laboratory-derived results to the natural environment."

"Our findings showed that although trophic transfer of quantum dots did take place in this simple food chain, they did not accumulate in the higher of the two organisms," says lead author David Holbrook. "While this suggests that quantum dots may not pose a significant risk of accumulating in aquatic invertebrate food chains in nature, additional research beyond simple laboratory experiments and a more exact means of quantifying transferred nanoparticles in environmental systems are needed to be certain."

* R.D. Holbrook, K.E. Murphy, J.B. Morrow and K.D. Cole. Trophic transfer of nanoparticles in a simplified invertebrate food chain. Nature Nanotechnology, June 2008 (advance online publication).

####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Michael E. Newman

(301) 975-3025

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project