Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fluorescent nano-barcodes could revolutionise diagnostics

Dr Dimitrov
Dr Dimitrov

Abstract:
A new technology with research and clinical application including the early detection of disease has been invented and developed by University of Queensland researchers.

Fluorescent nano-barcodes could revolutionise diagnostics

Australia | Posted on May 22nd, 2008

A new technology with research and clinical application including the early detection of disease has been invented and developed by University of Queensland researchers.

Dr Krassen Dimitrov, from UQ's Australian Institute for Bioengineering & Nanotechnology, has developed fluorescent "barcodes" called nanostrings, offers greater sensitivity and accuracy than current detection methods.

The research has been published the prestigious international journal Nature Biotechnology.

Dr Dimitrov said nanostrings bind to RNA molecules for digital gene expression analysis.

"Because this system can count the exact number of biomolecules present we can get an extremely accurate and sensitive picture of gene expression at a particular point in time," Dr Dimitrov said.

"This quantitative data is superior to other gene expression systems such as microarrays, which rely on the analogue measurement of fluorescence and therefore are less accurate and have a limited range.

"The nanostring is an important technological development in both clinical and research settings. We will be able to more accurately detect molecules associated with particular diseases and in the research arena, we will be able to identify new molecules associated with diseases and trace these back to the genes responsible."

He said the technology is based on a non-enzymatic process which reduces the chance of bias and is more robust in a variety of different conditions.

Dr Dimitrov is currently working on the next step, which will be new nano-barcodes that will further reduce the cost and improve sensitivity and usability.

This technology has been commercialised in Seattle by a company founded by Dr Dimitrov in 2003.

The AIBN is a multi-disciplinary research institute based at UQ, which brings together the skills of world-class researchers in the areas of bioengineering and nanotechnology to produce positive health and environmental outcomes such as biomedical delivery; bio-devices; tissue regeneration; and cell therapies.

####

About University of Queensland
####

About University of Queensland
The University of Queensland (UQ) is one of Australia's premier learning and research institutions. It is the oldest university in Queensland and has produced generations of graduates who have gone on to become leaders in all areas of society and industry. The University is a founding member of the national Group of Eight, an alliance of research-strong "sandstone" universities committed to ensuring that Australia has higher education institutions which are genuinely world class. It belongs also to the global Universitas 21 alliance. This group aims to enhance the quality of university outcomes through international benchmarking and a joint venture e-learning project with The Thomson Corporation.

For more information, please click here

Contacts:
Dr Krassen Dimitrov
7 3346 3880

or
Russell Griggs
07 3346 3989

Copyright © University of Queensland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project