Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Real-time observation of the DNA-repair mechanism

Abstract:
For the first time, researchers at Delft University of Technology have witnessed the spontaneous repair of damage to DNA molecules in real time. They observed this at the level of a single DNA molecule. Insight into this type of repair mechanism is essential as errors in this process can lead to the development of cancerous cells. Researchers from the Kavli Institute of Nanoscience Delft are to publish an article on this in the leading scientific journal Molecular Cell.

Real-time observation of the DNA-repair mechanism

Netherlands | Posted on May 22nd, 2008

Cells have mechanisms for repairing the continuous accidental damage occurring in DNA. These damages can vary from a change to a single part of the DNA to a total break in the DNA structure. These breaks can, for instance, be caused by ultraviolet light or X-rays, but also occur during cell division, when DNA molecules split and form two new DNA molecules. If this type of break is not properly repaired it can be highly dangerous to the functioning of the cell and lead to the creation of a cancerous cell.

One major DNA-repair mechanism involved in repairing these breaks is known as homologous recombination. This mechanism has been observed for the first time by Delft University of Technology researchers in real time and at the level of a single DNA molecule.

To observe this, a DNA molecule is stretched between a magnetic bead and a glass surface. A force is exerted on the magnetic bead using a magnetic field, enabling researchers to pull and rotate a single DNA molecule in a controlled fashion. As the position of the bead changes when the DNA molecule is repaired, researchers are able to observe the repair process in detail.

####

For more information, please click here

Contacts:
Frank Nuijens

31-152-784-259

Copyright © Delft University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project