Home > Press > Real-time observation of the DNA-repair mechanism
Abstract:
For the first time, researchers at Delft University of Technology have witnessed the spontaneous repair of damage to DNA molecules in real time. They observed this at the level of a single DNA molecule. Insight into this type of repair mechanism is essential as errors in this process can lead to the development of cancerous cells. Researchers from the Kavli Institute of Nanoscience Delft are to publish an article on this in the leading scientific journal Molecular Cell.
Cells have mechanisms for repairing the continuous accidental damage occurring in DNA. These damages can vary from a change to a single part of the DNA to a total break in the DNA structure. These breaks can, for instance, be caused by ultraviolet light or X-rays, but also occur during cell division, when DNA molecules split and form two new DNA molecules. If this type of break is not properly repaired it can be highly dangerous to the functioning of the cell and lead to the creation of a cancerous cell.
One major DNA-repair mechanism involved in repairing these breaks is known as homologous recombination. This mechanism has been observed for the first time by Delft University of Technology researchers in real time and at the level of a single DNA molecule.
To observe this, a DNA molecule is stretched between a magnetic bead and a glass surface. A force is exerted on the magnetic bead using a magnetic field, enabling researchers to pull and rotate a single DNA molecule in a controlled fashion. As the position of the bead changes when the DNA molecule is repaired, researchers are able to observe the repair process in detail.
####
For more information, please click here
Contacts:
Frank Nuijens
31-152-784-259
Copyright © Delft University of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |