Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sunfilm to Expand Solar Module Production with 2nd SunFab Tandem Junction Line from Applied Materials

Abstract:
Due to strong demand for its solar modules, Sunfilm AG announced today that it has awarded Applied Materials, Inc. a contract for a second Applied SunFab™ Thin Film Line. This second production line will be installed next to Sunfilm's first line in Grossroehrsdorf, near Dresden, Germany. Sunfilm's first Applied SunFab Line, ordered last year, is expected to begin initial production runs this July, with the second line scheduled for start up approximately one year later. This will bring Sunfilm's annual capacity at this site to over 120MWp.

Sunfilm to Expand Solar Module Production with 2nd SunFab Tandem Junction Line from Applied Materials

GROSSROEHRSDORF, Germany and SANTA CLARA, CA | Posted on May 13th, 2008

With these production lines, Sunfilm is setting a new benchmark for the solar industry by manufacturing the world's first tandem junction, silicon thin film photovoltaic modules using 5.7m2 glass panels. These ultra-large substrates also offer the flexibility to produce finished solar modules of half and quarter size, depending on customer preferences.

"Developing cost-effective solar technology is critical for the future, and we must continue to find new ways to improve module performance in order to make solar energy more affordable for the end users," said Dr. Sven Hansen, chairman of Sunfilm's Supervisory Board. "Our first Applied SunFab Line is making excellent progress towards this goal."

"Sunfilm's lines will be a first in the industry, demonstrating the significant advantages of scale by applying large area nanomanufacturing technology and tandem junction efficiency to reduce cost," said Dr. Mark Pinto, senior vice president and general manager of Applied's Energy and Environmental Solutions Group. "Sunfilm's commitment to a second line affirms the readiness of 5.7m2 tandem junction technology for manufacturing."

Applied Materials' SunFab Thin Film Line features tandem junction cell technology that combines amorphous and microcrystalline layers to absorb both the shorter and longer wavelengths of sunlight. These tandem junction cells deliver significantly higher conversion efficiencies at a competitive cost per watt relative to single junction technologies. By combining tandem technology with ultra-large 5.7m2 substrates and volume manufacturing, Sunfilm expects to substantially reduce the cost of solar electricity.

Sunfilm AG was established at the end of 2006 by Good Energies and NorSun to manufacture the world's first 5.7m2 tandem thin film photovoltaic modules on glass substrates on a production line supplied by Applied Materials, Inc. Sunfilm's website is www.Sunfilmsolar.com.

####

About Applied Materials, Inc.
Applied Materials, Inc. (Nasdaq:AMAT) is the global leader in Nanomanufacturing Technology™ solutions with a broad portfolio of innovative equipment, service and software products for the fabrication of semiconductor chips, flat panel displays, solar photovoltaic cells, flexible electronics and energy efficient glass. At Applied Materials, we apply Nanomanufacturing Technology to improve the way people live.

For more information, please click here

Contacts:
Applied Materials, Inc.
Betty Newboe
408-563-0647 (editorial/media)

Linda Heller
408-986-7977 (financial community)

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Thin films

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project