Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ASU researchers synthesize molecule with self-control

Abstract:
Plants have an ambivalent relationship with light. They need it to live, but too much light leads to the increased production of high-energy chemical intermediates that can injure or kill the plant.

ASU researchers synthesize molecule with self-control

Tempe, AZ | Posted on May 12th, 2008

The intermediates do this because the efficient conversion of sunlight into chemical energy cannot keep up with sunlight streaming into the plant.

"The intermediates don't have anywhere to go because the system is jammed up down the line," says ASU chemist Devens Gust. Plants employ a sophisticated process to defend against damage.

To better understand this process, Gust, along with fellow ASU researchers Thomas Moore and Ana Moore, both professors of chemistry and biochemistry, designed a molecule that mimics what happens in nature. They report results with their molecule in the advanced online publication of Nature Nanotechnology (May 4, 2008).

In nature, plants defend against this sunlight overload process using non-photochemical quenching (NPQ). This process drains off the excess light excitation energy as heat so that it cannot generate the destructive high-energy species.

The ASU-designed molecule works in a similar fashion in that it converts absorbed light to electrochemical energy but reduces the efficiency of the conversion as light intensity increases. The ASU-designed molecule has several components including two light gathering antennas - a porphyrin electron donor, a fullerene acceptor and a control unit that reversibly photoisomerizes between a dihydroindolizine (DHI) and a betaine (BT).

When white light (sunlight) shines on a solution of the molecules, light absorbed by the porphyrin (or by the antennas) is converted to electrochemical potential energy. When the white light intensity is increased, the DHI on some molecules change to a different molecular structure, BT, that drains light excitation energy out of the porphyrin and converts it to heat, avoiding the generation of excess electrochemical potential. As the light becomes brighter, more molecules switch to the non-functional form, so that the conversion of light to chemical energy becomes less efficient. The molecule adapts to its environment, regulating its behavior in response to the light intensity.

"One hallmark of living cells is their ability to sense and respond to surrounding conditions," explains Thomas Moore. "In the case of metabolic control this process involves molecular-level recognition events that are translated into control of a chemical process."

"Functionally, this mimics one of the processes in photosynthesis that severely limits the energy conversion efficiency of higher plants," he added. "One way in which this work is important is that by understanding these events at the molecular level one can imagine redesigning photosynthesis to improve energy conversion efficiency and thereby come closer to meeting our energy needs."

The research is also important to one aspect of the exploding field of nanotechnology, that of regulation, Gust adds. Biological systems are known for their ability to engage in adaptive self-regulation. The nanoscale components respond to other nanoscale systems and to external stimuli in order to keep everything in balance and functioning properly. The ASU research shows how a bio-regulation system has been captured in a non-biological molecular scale analog process.

"Achieving such behavior in human-made devices is vital if we are to realize the promise of nanotechnology," adds Gust. "Although the mechanism of control used in the ASU molecule is different from that employed in NPQ, the overall effect is the same as occurs in the natural photosynthetic process."

In addition to Gust, Thomas Moore and Ana Moore, the ASU work was carried out by Stephen Straight, Gerdenis Kodis, Yuichi Terazono and Michael Hambourger.

####

For more information, please click here

Contacts:
Skip Derra

480-965-4823

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Molecular Nanotechnology

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project