Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Bedding down with fluidisation

April 24th, 2008

Bedding down with fluidisation

Abstract:
Pharmaceutical companies may be able to use a more environmentally friendly drug processing method if researchers in the West Midlands can successfully develop a new technique for handling nanoparticles.

Teams at Birmingham and Warwick universities are hoping to solve the problem of capturing and preserving the properties of nanoparticles produced during supercritical fluid (SCF) precipitation processes by combining it with fluidised bed technology.

'If you produce a drug substance in the nanoparticle form, it is impossible to get such a material to flow; it agglomerates very easily and is very difficult to handle and deal with. We have got what we think is a novel way of turning that into a form that can be handled, using fluidised bed technology,' said Warwick's Prof Jonathan Seville.

Fluidised beds are widely used in many industries as reactors, dryers, agglomerators and coaters. They are used in the pharmaceutical industry for coating liquids on to tablets and capsules, rather than for handling powdered active drug substances collected from SCF processes. Fluidisation in the process occurs when a fluid, usually a gas, flows upwards through a bed of solid particles and causes them to be suspended, which makes them easier to handle.

Source:
theengineer.co.uk

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project