Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Iowa State researchers developing system to efficiently convert biomass to ethanol

Victor Lin, an Iowa State University professor of chemistry and director of the Center for Catalysis, is leading a project that's developing a system to convert plant biomass into ethanol.  Photo by Bob Elbert.
Victor Lin, an Iowa State University professor of chemistry and director of the Center for Catalysis, is leading a project that's developing a system to convert plant biomass into ethanol. Photo by Bob Elbert.

Abstract:
Iowa State University researchers are developing an integrated system of thermochemical and catalytic technologies to efficiently produce ethanol from plant biomass.

Iowa State researchers developing system to efficiently convert biomass to ethanol

AMES, IA | Posted on March 20th, 2008

The U.S. Department of Agriculture and the U.S. Department of Energy recently announced they'll support the research with a two-year grant of up to $944,899. The departments are awarding $18.4 million over three years to 21 universities and companies for biomass research, development and demonstration projects.

"These grants help fund the innovative research needed to develop technologies and systems that lead to the production of bio-based products and biofuels," said Ed Schafer, the U.S. secretary of agriculture.

"Increasing supplies of renewable energy and using more energy efficient technologies must continue to play an indispensable role in reducing greenhouse gas emissions and meeting the rapidly growing demand for energy," said Samuel Bodman, the U.S. secretary of energy.

Victor Lin, a professor of chemistry and director of the Center for Catalysis, will lead the Iowa State project. The project also includes Robert C. Brown, the Iowa Farm Bureau Director of the Bioeconomy Institute; George Kraus, the director of the Institute for Physical Research and Technology; Marek Pruski, a scientist for the Department of Energy's Ames Laboratory located at Iowa State; and Justinus Satrio, a project manager at the Center for Sustainable Environmental Technologies.

They're working to develop a biomass-to-ethanol system that would work like this: Plant biomass such as corn stalks and switchgrass would be broken down by fast pyrolysis, a process that uses heat at 900 degrees Fahrenheit in the absence of oxygen to convert biomass into a bio-oil. The bio-oil would be gasified with steam and/or oxygen at 1,100 to 1,500 degrees Fahrenheit to produce a synthesis gas, a mixture of carbon monoxide, hydrogen, carbon dioxide and short-chain hydrocarbon gases. The hydrogen and carbon monoxide in the synthesis gas would be reacted with a nanotechnology-based catalyst to produce ethanol fuel.

Lin said researchers have looked at catalysts to produce ethanol from synthesis gas for years. But there were some problems with the old chemistry and research progress has slowed since the early 1990s. The chemistry didn't produce the selective reactions necessary for efficient production. There were also issues with controlling those reactions.

But now, "With the emphasis on biomass and biorenewables, I think there will be a renaissance of this research and technology," Lin said.

His idea for a new kind of catalyst is based on solid nanospheres just 250 billionths of a meter in diameter that have honeycomb channels running through them. Lin said those channels can be loaded with a metallic catalyst and other species that can promote higher reactivity and product selectivity. The new technology, because of the nanoporous structure and the unique spatial arrangement of the catalytic components, solves some of the selectivity and control problems of the old chemistry.

Lin has already worked on the synthesis gas-to-ethanol catalyst for a year and has filed a patent application.

Satrio, of Iowa State's Center for Sustainable Environmental Technologies, called the research collaboration "a very exciting project. This is on the cutting edge of this technology."

The center's focus will be to develop a system that efficiently and economically produces clean synthesis gas that's ready to be reacted with Lin's catalyst. Center researchers will use the two thermochemical technologies (fast pyrolysis and gasification) with the goal of developing a complete conversion system that makes economic sense for the future.

Transporting biomass to fuel production plants isn't easy or cheap because of the bulk and quantities involved. The Department of Energy has estimated a biorefinery would need at least 2,000 tons of biomass per day. A year's supply would cover 100 acres with 25 feet of biomass.

The Iowa State idea calls for biomass to be transported to small, local fast pyrolysis plants that would convert the plant fiber into liquid bio-oil, Satrio said. The bio-oil would be much easier to transport to bigger, regional facilities where it could be efficiently gasified at high pressure and catalytically converted into ethanol.

The departments of agriculture and energy said the 21 research projects won grants because they can advance President George Bush's Advanced Energy Initiative. The initiative's goals are to change the way the country powers its cars, homes and businesses by increasing energy efficiency and diversifying energy sources. Funding for the projects will be provided through the departments' Biomass Research and Development Initiative.

####

For more information, please click here

Contacts:
Victor Lin
Chemistry and Center for Catalysis
(515) 294-3135


Robert C. Brown
Bioeconomy Institute
(515) 294-7934


Justinus Satrio
Center for Sustainable Environmental Technologies
(515) 294-3951


Mike Krapfl
News Service
(515) 294-4917

Copyright © Iowa State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project