Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanopores That Can Recognize, Separate Proteins and Small Molecules Developed at UMass Amherst

Abstract:
Nanopores, holes less than one-thousand the width of a human hair, are capable of isolating strands of DNA or therapeutic drugs from a solution, based mostly on the size of the pores. Now, a chemist at the University of Massachusetts Amherst has created nanopores that can recognize and interact with certain molecules, actively controlling their movement across synthetic membranes. Results were published online Feb. 3 in Nature Nanotechnology.

Nanopores That Can Recognize, Separate Proteins and Small Molecules Developed at UMass Amherst

AMHERST, MA | Posted on March 2nd, 2008

By lining their internal cavities with various polymers, S. "Thai" Thayumanavan and his students Elamprakash Savariar and K. Krishnamoorthy of the UMass Amherst department of chemistry have developed a method for creating nanopores that can separate small molecules and proteins based on size, charge and how strongly they are repelled by water. The method could be used in many applications including diagnostic medical tests, DNA sequencing and fuel-cell membranes.

"Modifying the internal cavities of nanopores with polymers allows them to interact with molecules moving through the pores. By using different polymers, we can control how the molecules will react with the nanopore and this allows us to identify them as they pass through," says Thayumanavan. "This process may be especially suitable for sensors, since the presence of a single molecule can produce changes in the electrical properties of the nanopore that we can detect and measure."

Thayumanavan views this process as a platform technology that could be used by researchers in many fields. "At UMass Amherst, we are researching the use of this method in sensors and separations, as well as addressing some fundamental questions about fuel-cell membranes as part of the Center for Fueling the Future funded by the National Science Foundation."

To create these functional nanopores, Thayumanavan immersed a membrane containing nanopores in a tin solution, causing tin ions with a positive charge to adhere to the inside of the pores. Filtering a negatively charged polymer solution through the membrane caused tin ions to attract molecules of the polymer like a magnet and hold them in place, where they can easily react with other molecules in the confined space of the nanopores.

This process has many advantages over current methods. "Using polymer molecules allows you to precisely control the size of the nanopores at the same time that you are altering them to perform specific functions," says Thayumanavan. "It can also be done quickly, usually in a few minutes. This method also results in a uniform layer inside the nanopore that behaves in a predictable way."

Testing performed by Thayumanavan showed that using different types of polymers could create nanopores of almost any size, which translates to efficient separation of molecules based on their size.

Nanopores lined with polymers were also able to separate molecules based on their charge. "We found that nanopores with negatively charged interiors would allow positively charged molecules to move through the membrane more quickly," says Thayumanavan. "Conversely, nanopores decorated with positively charged interiors would favor negatively charged molecules."

In additional experiments, Thayumanavan lined the nanopores with polymers that were hydrophobic, or strongly repelled by water, and found that they would allow other hydrophobic molecules to pass more easily through the membrane. A final test revealed that the membranes could be used to separate proteins based on electrical charge.

Future research will focus on using different polymers with different functional groups to find out how specific the process can be made. "This method is limited only by the ability of chemists to place chemically reactive functional groups in polymer chains," says Thayumanavan.

####

About University of Massachusetts Amherst
From polymer science to plant biology, the University of Massachusetts Amherst is a world leader for vital research that advances knowledge, enhances opportunities and produces technological innovations that invigorate the economy and benefit society.

For more information, please click here

Contacts:
Sankaran Thayumanavan
413/545-1313

Copyright © University of Massachusetts Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Nanobiotechnology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project