Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Keeping the Nano-Chips Cool with Graphene

Abstract:
A University of California - Riverside research team lead by professor Alexander A. Balandin of the department of electrical engineering working in collaboration with assistant professor Chun Ning Lau of the department of physics and astronomy discovered that graphene, a single plane layer of carbon atoms arranged in honey-comb lattice, manifests extremely high thermal conductivity exceeding that of diamond and carbon nanotubes. The superb heat conducting properties of graphene can be used for hot-spot cooling and thermal management of the nanometer scale electroniccircuits and optoelectronic devices.

Keeping the Nano-Chips Cool with Graphene

RIVERSIDE, CA | Posted on February 24th, 2008

Graphene is a recently discovered form of carbon, which consists of only
one layer of atoms arranged in a honey-comb lattice. It manifests a
number of intriguing properties. For example, electrons in graphene behave
like they are massless. An extraordinary high mobility of electrons in
graphene makes graphene a promising material for future ultra-fast
electronic circuits.

The University of California - Riverside (UCR) team led by electrical
engineering professor Balandin has recently discovered that
graphene is also a superior heat conductor. Its thermal conductivity
is several times larger than that of diamond - the best known bulk crystal
heat conductor and exceeds that of carbon nanotubes, which were -
up until now - beleived to be the best heat conductors amond all solid
materials.

The near room-temperature thermal conductivity of a single layer graphene
suspended across a trench in silicon wafer was measured to be up to 5300
W/mK. The measurement of the thermal conductivity of graphene, an object of just
one atom thick, required a development of completely new experimental method.
The measurements were performed with the help of the non-contact optical
technique based on the micro-Raman spectroscopy.

The superb thermal conductivity of graphene coupled with its plane
geometry and demonstrated integration with silicon make graphene
and graphene multi-layers promissing materials for
thermal management of the nanometer scale electronic circuits.

The discovery of the UCR team was reported this week in Nano Letters
[link to the paper is here:
http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/asap/abs/nl0731872.html ]

For more information, visit Professor Balandin's Nano-Device Laboratory
web-site at ndl.ee.ucr.edu/

####

For more information, please click here

Contacts:
Alexander A. Balandin, PhD
Professor, Department of Electrical Engineering
Chair, Materials Science and Engineering Program
Director, Nano-Device Laboratory
University of California - Riverside
Riverside, CA 92521 USA

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project