Home > News > UK team to use nanoparticles to improve brain drug delivery
February 19th, 2008
UK team to use nanoparticles to improve brain drug delivery
Abstract:
A nanoparticle-based delivery system is being developed in the UK as a potential means of bypassing the blood brain barrier and improve the treatment of central nervous system diseases such as brain cancer.
Since it first began to emerge in the late 1970s, nanotechnology has been hailed as the next step in fields as disparate as water treatment and mechanical engineering. While in general the development of such technology has been slow, in medicine the ability to create and manipulate nanoscale particles is beginning to revolutionize the production and delivery of drugs, particularly in terms of targeted therapeutics.
One example of such work is research being conducted by scientists at the University of Portsmouth, in the UK. The three-year project, which is funded by a £451,000 ($880,000) grant from the Biotechnology and Biological Sciences Research Council, is using polymer-based nanoparticles to modify a naturally occurring peptide capable of creating temporary openings in the blood-brain barrier, allowing for improved drug delivery.
Source:
in-pharmatechnologist.com
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Govt.-Legislation/Regulation/Funding/Policy
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
New discovery aims to improve the design of microelectronic devices September 13th, 2024
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||