Home > News > NSF preparing for the demise of Moore's Law
February 13th, 2008
NSF preparing for the demise of Moore's Law
Abstract:
In anticipation of Moore's Law becoming irrelevant in the next 10 to 20 years, the National Science Foundation (NSF) wants funding for research that could lead to a replacement for current silicon technology.
The NSF last week requested US$20 million from the U.S. government for fiscal 2009 to start the "Science and Engineering Beyond Moore's Law" effort, which would fund academic research on technologies, including carbon nanotubes, quantum computing and massively multicore computers, that could improve and replace current transistor technology.
Moore's Law states that the number of transistors that can be placed on silicon, and its attendant computational capability, doubles every 18 months.
Human and economic progress in the U.S. over the past 20 years has depended on an increasing ability to do information processing and computing, said Michael Foster, division director of computing and communication foundations at NSF. "If the current technological basis of that ends, we've got to find some way to replace it or we're going to stop moving forward."
Source:
pcworld.idg.com.au
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Govt.-Legislation/Regulation/Funding/Policy
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Chip Technology
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||