Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Monash pioneers nano scaffold to rebuild nerve damage

Abstract:
A Monash University PhD student has developed a new technique that could revolutionise stem cell treatment for Parkinson's disease and spinal cord injury.

Monash pioneers nano scaffold to rebuild nerve damage

Australia | Posted on January 31st, 2008

David Nisbet from Monash University's Department of Materials Engineering has used existing polymer-based biodegradable fibres, 100 times smaller than a human hair, and re-engineered them to create a unique 3-D scaffold that could potentially allow stem cells to repair damaged nerves in the human body more quickly and effectively.

Mr Nisbet said a combined process of electrospinning and chemical treatment was used to customise the fibre structure, which can then be located within the body.

"The scaffold is injected into the body at the site requiring nerve regeneration. We can embed the stem cells into the scaffold outside the body or once the scaffold is implanted. The nerve cells adhere to the scaffold in the same way ivy grips and weaves through a trellis, forming a bridge in the brain or spinal cord. Over time, the scaffold breaks down and is naturally passed from the body, leaving the newly regenerated nerves intact," Mr Nisbet said.

Mr Nisbet said the existing processes released stem cells into the nervous system where they 'floated' around.

"Our studies show that stem cells anchored to a scaffold not only attach more easily, but rapidly adapt to their environment and regenerate effectively. We are very excited about the therapeutic outcomes that could be obtained from our research," Mr Nisbet said.

"We are at the interface of two once separate disciplines -- nanotechnology and stem cell research -- combining into a new exciting era of discovery which could be the first step towards a cure for conditions such as Parkinson's disease and spinal cord injury.

"Repairing damaged neural pathways is the holy grail of many researchers. It is a very long road to success, which will require small steps from many people, but it's wonderful to know we're making such a significant contribution here at Monash University," Mr Nisbet said.

The potential of Nisbet's scaffold design has captured the interest of colleagues. The University of Toronto in Canada and the Melbourne-based Howard Florey Institute are conducting further tests, with preliminary results showing strong potential.

Another collaboration, with the Mental Health Research Institute of Victoria, is investigating the use of scaffolds in the potential treatment of damaged brain nerve cells.

Mr Nisbet said biodegradable fibres were commonly used in biomedical sciences and regenerative technologies, but his technique of re-engineering them into a 3-D structure is a world first.

For high magnification images of the cellular structure or a copy of Mr Nisbet's paper contact Ms Samantha Blair, at +61 3 9903 4841.

####

About Monash University
Monash University seeks to improve the human condition by advancing knowledge and fostering creativity. It does so through research and education and a commitment to social justice, human rights and a sustainable environment.

For more information, please click here

Contacts:
Media Communications
Tel: +61 3 9903 4840
or +61 3 9903 4837
Email:

Copyright © Monash University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Nanomedicine

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Discoveries

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project